Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The involvement of calpain-independent proteolysis of the tumor suppressor NF2 (merlin) in schwannomas and meningiomas

Abstract

Neurofibromatosis type 2 (NF2) protein, also known as merlin or schwannomin, is a tumor suppressor, and NF2 is mutated in most schwannomas and meningiomas. Although these tumors are dependent on NF2, some lack detectable NF2 mutations, which indicates that alternative mechanisms exist for inactivating merlin. Here, we demonstrate cleavage of merlin by the ubiquitous protease calpain and considerable activation of the calpain system resulting in the loss of merlin expression in these tumors. Increased proteolysis of merlin by calpain in some schwannomas and meningiomas exemplifies tumorigenesis linked to the calpain-mediated proteolytic pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Evans, D.G. et al. A genetic study of type 2 neurofibromatosis in the United Kingdom. J. Med. Genet. 29, 841–846 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Martuza, R.L., & Eldridge, R. Neurofibromatosis 2 (bilateral acoustic neurofibromatosis). N. Engl. J. Med. 318, 684–688 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Eldridge, R. Central neurofibromatosis with bilateral acoustic neurinoma. Adv. Neurol. 29, 57–65 (1981).

    CAS  PubMed  Google Scholar 

  4. Rouleau, C.A. et al. Alteration in a new gene encoding a putative membrane-organizing protein causes neurofibromatosis type 2. Nature 363, 515–521 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Trofatter, J.A. et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 72, 791–800 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Tsukita, S. & Yonemura, S. ERM (ezrin/radixin/moesin) family: from cytoskeleton to signal transduction. Curr. Opin. Cell Biol. 9, 70–75 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Algrain, M., Turunen, O., Vaheri, A., Louvard, D. & Arpin, M. Ezrin contains cytoskeleton and membrane binding domains accounting for its proposed role as a membrane-cytoskeletal linker. J. Cell Biol. 120, 129–139 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Koga, H. et al. Impairment of cell adhesion by expression of the mutant neurofibromatosis type 2(NF2) genes which miss exons in the ERM-homology domain. Oncogene (in the press).

  9. Ruttledge, M.H. et al. Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nature Genet. 6, 180–184 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Merel, P. et al. Screening for germ-line mutations in the NF2 gene. Genes Chromosom. Cancer 12, 117–127 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Lekanne, D.R. et al. Frequent NF2 gene transcript mutations in sporadic meningiomas and vestibular schwannomas. Am. J. Hum. Genet. 54, 1022–1029 (1994).

    Google Scholar 

  12. Harada, T. et al. Molecular genetic investigation of the neurofibromatosis type 2 tumor suppressor gene in sporadic meningioma. J. Neurosurg. 84, 847–851 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Bijlsma, E.K., Brouwer, M.R., Bosch, D.A., Westerveld, A. & Hulsebos, T.J. Molecular characterization of chromosome 22 deletions in schwannomas. Genes Chromosom. Cancer 5, 201–205 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Twist, E.C. et al. The neurofibromatosis type 2 gene is inactivated in schwannomas. Hum. Mol. Genet. 3, 147–151 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Arakawa, H., Hayashi, N., Nagase, H., Ogawa, M. & Nakamura, Y. Alternative splicing of the NF2 gene and its mutation analysis of breast and colorectal cancers. Hum. Mol. Genet. 3, 565–568 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Bianchi, A.B. et al. High frequency of inactivating mutations in the neurofibromatosis type 2 gene (NF2) in primary malignant mesotheliomas. Proc. Natl. Acad. Sci. USA 92, 10854–10858 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sekido, Y. et al. Neurofibromatosis type 2 (NF2) gene is somatically mutated in mesothelioma but not in lung cancer. Cancer Res. 55, 1227–1231 (1995).

    CAS  PubMed  Google Scholar 

  18. MacCollin, M. et al. Mutational analysis of patients with neurofibromatosis 2. Am. J. Hum. Genet. 55, 314–320 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Welling, D.B. et al. Mutational spectrum in the neurofibromatosis type 2 gene in sporadic and familial schwannomas. Hum. Genet. 98, 189–193 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Stemmer-Rachamimov, O.A. et al. Universal absence of merlin, but not other ERM family members, in schwannomas. Am. J. Pathol. 151, 1649–1654 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gutmann, D.H., Giordano, M.J., Fishback, A.S. & Guha, A. Loss of merlin expression in sporadic meningiomas, ependymomas and schwannomas. Neurology 49, 267–270 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Lee, J.H. et al. Reduced expression of schwannomin/merlin in human sporadic meningiomas. Neurosurgery 40, 578–587 (1997).

    CAS  PubMed  Google Scholar 

  23. Takeshima, H. et al. Detection of cellular proteins that interact with the NF2 tumor suppressor gene product. Oncogene 9, 2135–2144 (1994).

    CAS  PubMed  Google Scholar 

  24. Saido, T.C., Sorimachi, H. & Suzuki, K. Calpain: new perspectives in molecular diversity and physiological-pathological involvement. FASEB J. 8, 814–822 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Suzuki, K., Sorimachi, H., Yoshizawa, T., Kinbara, K. & Ishiura, S. Calpain: novel family members, activation, and physiologic function. Biol. Chem. Hoppe-Seyler 376, 523–529 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Sorimachi, H., Ishiura, S. & Suzuki, K. Structure and physiological function of calpains. Biochem. J. 328, 721–732 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tsubuki, S., Saito, Y., Tomioka, M., Ito, H. & Kawashima, S. Differential inhibition of calpain and proteasome activities by peptidyl aldehydes of dileucine and trileucine. J. Biochem. 119, 572–576 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Coux, O., Tanaka, K. & Goldberg, A.L. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65, 801–847 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Burkhart, W.A., Moyer, M.B., Bailey, J.M. & Miller, C.G. Electroblotting of proteins to Teflon tape and membranes for N- and C-terminal sequence analysis. Anal. Biochem. 236, 364–367 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Miller, C.G. et. al. Techniques in Protein Chemistry Vol. VI, (ed. Crabb, John W.) 219–227 (Academic, San Diego, California, 1995).

    Book  Google Scholar 

  31. Nagao, S. et al. Calpain-calpastatin interactions in epidermoid carcinoma KB cells. J. Biochem. 115, 1178–1184 (1994)

    Article  CAS  PubMed  Google Scholar 

  32. Billger, M., Wallin, M. & Karlsson, J.O. Proteolysis of tubulin and microtubule-associated proteins 1 and 2 by calpain I and II. Difference in sensitivity of assembled and disassembled microtubules. Cell Calcium 9, 33–44 (1988).

    Article  CAS  PubMed  Google Scholar 

  33. Saido, T.C. et al. Autolytic transition of μ-calpain upon activation as resolved by antibodies distinguishing between the pre- and post-autolysis forms. J. Biochem. 111, 81–86 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Siman, R., Baudry, M. & Lynch, G. Brain fodrin: substrate for calpain I, an endogenous calcium-activated protease. Proc. Natl. Acad. Sci. USA 81, 3572–3576 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang, L.S. & Ksiezak, R.H. Calpain-induced proteolysis of normal human tau and tau associated with paired helical filaments. Eur. J. Biochem. 233, 9–17 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Inomata, M. et al. Involvement of calpain in integrin-mediated signal transduction. Arch. Biochem. Biophys. 328, 129–134 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Selliah, N., Brooks, W.H. & Roszman, T.L. Proteolytic cleavage of alpha-actinin by calpain in T cells stimulated with anti-CD3 monoclonal antibody. J. Immunol. 156, 3215–3221 (1996).

    CAS  PubMed  Google Scholar 

  38. Jay, D. & Stracher, A. Expression in Escherichia coli, phosphorylation with cAMP-dependent protein kinase and proteolysis by calpain of a 71-kDa domain of human endothelial actin binding protein. Biochem. Biophys. Res. Commun. 232, 555–558 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Huang, C. et al. Proteolysis of platelet cortactin by calpain. J. Biol. Chem. 272, 19248–19252 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Du, X. et al. Calpain cleavage of the cytoplasmic domain of the integrin beta 3 sub-unit. J. Biol. Chem. 270, 26146–26151 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Elvira, M., Diez, J.A., Wang, K.K. & Villalobo, A. Phosphorylation of connexin-32 by protein kinase C prevents its proteolysis by μ-calpain and m-calpain. J. Biol. Chem. 268, 14294–14300 (1993).

    CAS  PubMed  Google Scholar 

  42. Litersky, J.M. & Johnson, G.V. Phosphorylation by cAMP-dependent protein kinase inhibits the degradation of tau by calpain. J. Biol. Chem. 267, 1563–1568 (1992).

    CAS  PubMed  Google Scholar 

  43. Greenwood, J.A., Troncoso, J.C., Costello, A.C. & Johnson, G.V. Phosphorylation modulates calpain-mediated proteolysis and calmodulin binding of the 200-kDa and 160-kDa neurofilament proteins. J. Neurochem. 61, 191–199 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Scheffner, M., Huibregtse, J.M., Vierstra, R.D. & Howley, P.M. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75, 495–505 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Catzavelos, C. et al. Decreased levels of the cell-cycle inhibitor p27Kpl protein: prognostic implications in primary breast cancer. Nature Med. 3, 227–230 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Loda, M. et al. Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nature Med. 3, 231–234 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Jensen, R.L., Origitano, T.C., Lee, Y.S., Weber, M. & Wurster, R.D. In vitro growth inhibition of growth factor-stimulated meningioma cells by calcium channel antagonists. Neurosurgery 36, 365–373 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Jensen, R.L. et al. Inhibition of in vitro meningioma proliferation after growth factor stimulation by calcium channel antagonists: Part II-Additional growth factors, growth factor receptor immunohistochemistry, and intracellular calcium measurements. Neurosurgery 37, 937–946 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Felgner, P.L. et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 84, 7413–7417 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Siebert, P.D. & Chenchik, A. Modified acid guanidinium thiocyanate-phenol-chloroform RNA extraction method which greatly reduces DNA contamination. Nucleic Acids Res. 21, 2019–2020 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuyoshi Nakao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, Y., Koga, H., Araki, N. et al. The involvement of calpain-independent proteolysis of the tumor suppressor NF2 (merlin) in schwannomas and meningiomas. Nat Med 4, 915–922 (1998). https://doi.org/10.1038/nm0898-915

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0898-915

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing