Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Planting new targets for antiparasitic drugs

An organelle in apicomplexan parasites including those causing malaria and toxoplasmosis may be the site of a plant biosynthetic pathway that could provide new targets for drug discovery and development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Fichera, M.E. & Roos, D.S. A plastid organdie as a drug target in apicomplexan parasites. Nature 390, 407–409 (1997).

    Article  CAS  Google Scholar 

  2. Wilson, R.J.M. et al. Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J. Mol. Biol. 261, 155–172 (1996).

    Article  CAS  Google Scholar 

  3. Köhler, S. et al. A plastid of probable green algal origin in apicomplexan parasites. Science 275, 1485–1489 (1997).

    Article  Google Scholar 

  4. Roberts, F. et al. Evidence for shikimate pathway in apicomplexan parasites. Nature 393, 801–805 (1998).

    Article  CAS  Google Scholar 

  5. Bentley, R. The shikimate pathway—a metabolic tree with many branches. Crit. Rev. Biochem. Mol. Biol. 25, 307–383 (1990).

    Article  CAS  Google Scholar 

  6. McFadden, G.I., Reith, M.E., Munholland, J. & Lang-Unnasch, N. Plastid in human parasites. Nature 381, 482 (1996).

    Article  CAS  Google Scholar 

  7. Ridley, R.G. Antimalarial drug discovery and development—an industrial perspective. Exptl. Parasitol. 87, 293–304 (1997).

    Article  CAS  Google Scholar 

  8. Lill R., Nargang F.E. & Neupert W. Biogenesis of mitochondrial proteins. Curr. Opin. Cell Biol. 8, 505–512 (1996).

    Article  CAS  Google Scholar 

  9. Hrazdina, C. & Jensen, R.R. Spatial organisation of enzymes in plant metabolic pathways. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 241 (1992).

    Article  CAS  Google Scholar 

  10. Donald, R.G.K. & Roos, D.S. Gene knock-outs and allelic replacements in Toxoplasma gondii: HXGPRT as a selectable marker for ‘hit and run’ mutagenesis. Mol. Biochem. Parasitol. 91, 295–305 (1998).

    Article  CAS  Google Scholar 

  11. Crabb, B.S. et al. Targeted gene disruption shows that knobs enable malaria infected red cells to cytoadhere under physiological conditions. Cell 89, 287–296 (1997).

    Article  CAS  Google Scholar 

  12. Ajioka, J. et al. Gene discovery by EST sequencing in Toxoplasma gondii reveals sequences restricted to the apicomplexa. Genome Research 8, 18–28 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ridley, R. Planting new targets for antiparasitic drugs. Nat Med 4, 894–895 (1998). https://doi.org/10.1038/nm0898-894

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0898-894

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing