Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effects of the MYC oncogene antagonist, MAD, on proliferation, cell cycling and the malignant phenotype of human brain tumour cells

An Erratum to this article was published on 01 December 1995

Abstract

To investigate how overexpression of MAD, an antagonist of MYC oncogenes influences the malignant phenotype of human cancer cells, an adenovirus vector system was used to transfer the human MAD gene (AdMAD) into human astrocytoma cells. Decreased growth potential of AdMAD-infected cells was evidenced by a decrease in [3H]thymidine incorporation, an increase in cell doubling time and alteration of cell-cycle distribution. Diminished malignant potential of AdMAD-infected cells was manifested by their loss of anchorage-independent growth in soft agar and by their inability, in general, to induce tumorigenesis in a xenograft animal model. These studies indicate that adenovirus constructs encoding MAD dramatically inhibit the proliferation and tumorigenicity of human astrocytoma cells and support the use of MAD for gene therapy of human tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Alt, F. et al. The human myc-gene family. Cold Spring Harbor Symp. quant Biol. 51, 9–941 (1986).

    Article  Google Scholar 

  2. Kelly, K. & Siebenlist, U. The regulation and expression of c-myc in normal and malignant cells. Annu. Rev. Immun. 4, 317–338 (1986).

    Article  CAS  Google Scholar 

  3. DePinho, R., Schreiber-Agus, N. & Alt, F.W. Myc family oncogenes in the development of normal and neoplastic cells. Adv. Cancer Res. 57, 1–46 (1991).

    Article  CAS  Google Scholar 

  4. Stern, D., Roberts, A., Roche, N., Sporten, M. & Weinberg, R. Differential responsiveness of myc and ras transfected ceils to growth factors: Selective stimulation of myc transfected cells by epidermal growth factor. Molec. cell. Biol. 6, 870–877 (1986).

    Article  CAS  Google Scholar 

  5. Shichiri, M., Hanson, K. & Sedivy, J. Effects of c-myc expression on proliferation, quiescence, and the G0 to Gl transition in nontransformed cells. Cell Growth Differ. 4, 93–104 (1993).

    CAS  PubMed  Google Scholar 

  6. Kohl, N. & Ruley, H.R. Role of c-myc in the transformation of REF52 cells by viral and cellular oncogenes. Oncogene 2, 41–48 (1987).

    CAS  Google Scholar 

  7. Heikkila, R. et al. A c-myc antisense oligodeoxynucleotide inhibits entry into S phase but not progress into G0 to G1 . Nature 328, 445–449 (1987).

    Article  CAS  Google Scholar 

  8. Blackwood, E. & Eisenman, R. Max: A helix-loop-helix zipper protein that forms a sequence-specific DNA binding complex with myc. Science 251, 1211–1217 (1991).

    Article  CAS  Google Scholar 

  9. Blackwell, T.K., Kretzner, L., Blackwood, E.M., Eisenman, R.N. & Weintraub, H. Sequence-specific DNA binding by the c-Myc protein. Science 250, 1149–1151 (1990).

    Article  CAS  Google Scholar 

  10. Prendergast, G.C., Lawe, D. & Ziff, E.B. Association of Myn, the murine homolog of Max, with c-Myc stimulates methylation-sensitive DNA binding and Ras cotransformation. Cell 65, 395–407 (1991).

    Article  CAS  Google Scholar 

  11. Ayer, D.E., Kretzner, L. & Eisenman, R.N. Mad: A heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 72, 211–222 (1993).

    Article  CAS  Google Scholar 

  12. Zervos, A., Gyuris, J. & Brent, R., Mxil, a protein that specifically interacts with Max to bind Myc-Max recognition sites. Cell 72, 223–232 (1993).

    Article  CAS  Google Scholar 

  13. Blackwood, E.M., Luscher, B. & Eisenman, R.N. Myc and Max associate in vivo. Genes Dev. 6, 71–80 (1992).

    Article  CAS  Google Scholar 

  14. Schreiber-Agus, N. et al. An amino-terminal domain of Mxil mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor Sin3. Cell 80, 777–786 (1995).

    Article  CAS  Google Scholar 

  15. Ayer, D.E., Lawrence, A. & Eisenman, R.N. The amino-terminus of Mad mediates ternary complex formation with mammalian homologs of the yeast repressor Sin3 and is required for Mad:Max transcriptional repression. Cell 80, 767–776 (1995).

    Article  CAS  Google Scholar 

  16. Amati, B. & Land, H. Myc-Max-Mad: a transcription factor network controlling cell cycle progression, differentiation and death. Curr. Opin. Genet Dev. 4, 102–108 (1994).

    Article  CAS  Google Scholar 

  17. Ayer, D. & Eisenman, R. A switch from Myc:Max to Mad:Max heterocomplexes accompanies macrophage differentiation. Genes Dev. 7, 2110–2119 (1993).

    Article  CAS  Google Scholar 

  18. Larsson, L.-G., Pettersson, M., Oberg, F., Nilsson, K. & Luscher, B. Expression of mad, mxil, max and c-myc during induced differentiation of hematopoetic cells: Opposite regulation of mad and c-myc . Oncogene 9, 1247–1252 (1994).

    CAS  PubMed  Google Scholar 

  19. Lahoz, E.G., Xu, L., Schreiber-Agus, N. & DePinho, R.A. Suppression of myc, but not E1 a, transformation activity by Max-associated proteins, Mad and Mxi1. Proc. natn. Acad. Set U.S.A. 91, 5503–5507 (1994).

    Article  CAS  Google Scholar 

  20. Edelhoff, S. et al. Mapping of two genes encoding members of a distinct subfamily of Max interacting proteins: Mad to human chromosome 2 and mouse chromosome 6, and Mxil to human chromosome 10 and mouse chromosome 19. Oncogene 9, 665–668 (1994).

    CAS  Google Scholar 

  21. Gomez-Foix et al. Adenovirus-mediated transfer of the muscle glycogen phosphorylase gene into hepatocytes confers altered regulation of glycogen metabolism. J. Biol. Chem. 267, 25169–25134 (1992).

    Google Scholar 

  22. Graham, F. & Prevec, L. Manipulation of adenovirus vectors. in Methods in Molecular Biology: Gene Transfer and Expression Protocols. (ed. Murray, E.) 109–128 (Humana Press, Inc., Jersey City, 1991).

    Chapter  Google Scholar 

  23. Andrew, M. & Braciale, T. Antigen-dependent proliferation of cloned continuous lines of H-2-restricted influenza virus-specific cytotoxic T lymphocytes. J. Immun. 127, 1201–1207 (1981).

    CAS  PubMed  Google Scholar 

  24. Philipp, A. et al. Repression of cyclin Dl: A novel function of myc . Molec. cell. Biol. 14, 4032–4043 (1994).

    Article  CAS  Google Scholar 

  25. Kohl, N.E. et al. Selective inhibition of ras-dependent transformation by a far-nesyltransferase inhibitor. Science 260, 1934–1937 (1993).

    Article  CAS  Google Scholar 

  26. Clayman, G. et al. In vivo molecular therapy with p53 adenovirus for microscopic residual head and neck squamous carcinoma. Cancer Res. 55, 1–6 (1995).

    CAS  PubMed  Google Scholar 

  27. Shindo, H., Tani, E., Matsumoto, T., Hashimoto, T. & Furuyama, J. Stabilization of c-myc protein in human glioma cells. Acta neuropath. 86, 345–352 (1993).

    Article  CAS  Google Scholar 

  28. Evan, G.I. & Littlewood, T.D. The role of c-myc in cell growth. Curr. Opin. Genet. Dev. 3, 44–49 (1993).

    Article  CAS  Google Scholar 

  29. Hunter, T. & Pines, J. Cyclins and cancer II: Cyclin D and CDK inhibitors come of age. Cell 79, 573–582 (1994).

    Article  CAS  Google Scholar 

  30. Harrington, E., Fenidi, A. & Evan, G.I. Oncogenes and cell death. Curr. Opin. Genet. Dev. 4, 120–129 (1994).

    Article  CAS  Google Scholar 

  31. Facchini, L., Chen, S. & Penn, L. Dysfunction of the myc-induced apoptosis mechanism accompanies c-myc activation in the tumorigenic L929 cell line. Cell Growth Dev. 5, 637–646 (1994).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Willingham, T., Margraf, L. et al. Effects of the MYC oncogene antagonist, MAD, on proliferation, cell cycling and the malignant phenotype of human brain tumour cells. Nat Med 1, 638–643 (1995). https://doi.org/10.1038/nm0795-638

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0795-638

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing