Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • On the Market
  • Published:

Fluorescent viral vectors: A new technique for the pharmacological analysis of gene therapy

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Xiao, X., Li, J. & Samulski, R.J. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J. Virol. 70, 8098–8108 (1996).

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Kaplitt, M.G. et al. Long-term expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nature Genet. 8, 148–154 (1994).

    Article  CAS  Google Scholar 

  3. Blomer, U. et al. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J. Virol. 71, 6641–6649 (1997).

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Bartlett, J.S., Quattrocchi, K.B. & Samulski, R.J. The development of adeno-associated virus as a vector for cancer gene therapy, in The Internet Book of Cene Therapy: Cancer Therapeutics (eds. Sobol, R.E. & Scanlon, K.J.) 27–40 (Appleton & Lange, Stamford, Connecticut, 1995).

    Google Scholar 

  5. Svensson, U. & Persson, R. Entry of adenovirus 2 into HeLa cells. J. Virol. 51, 687–694 (1984).

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Varga, M.J., Weibull, C. & Everitt, E. Infectious entry pathway of adenovirus type 2. J. Virol. 65, 6061–6070 (1991).

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Leopold, P.L. et al. Fluorescent virions: Dynamic trafficking of the pathway of adenoviral gene transfer vectors in living cells. Hum. Cene Ther. 9, 367–378 (1998).

    Article  CAS  Google Scholar 

  8. Mujumdar, R.B., Ernst, L.A., Mujumdar, S.R., Lewis, C.J. & Waggoner, A.S. Cyanine dye labeling reagents: Sulfoindocyanine succinimidyl esters. Bioconjug. Chem. 4, 105–111 (1993).

    Article  CAS  Google Scholar 

  9. Southwick, P.L. et al. Cyanine dye labeling reagents—carboxymethylindocyanine succinimidyl esters. Cytometry 11, 418–430 (1990).

    Article  CAS  Google Scholar 

  10. Wessendorf, M.W. & Brelje, T.C. Which fluorophore is brightest? A comparison of the staining obtained using fluorescein, tetramethylrhodamine, lissamine rhodamine, texas red, and cyanine 3.18. Histochemistry 98, 81–85 (1992).

    Article  CAS  Google Scholar 

  11. Persson, R., Svensson, U. & Everitt, E. Virus receptor interaction in the adenovirus system. II. Capping and cooperative binding of virions on HeLa cells. J. Virol. 46, 956–963 (1983).

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Defer, C., Belin, M.T., Caillet-Boudin, M.L. & Boulanger, P. Human adenovirus-host cell interactions: Comparative study with members of subgroups B and C. J. Virol. 64, 3661–3673 (1990).

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Bergelson, J.M. et al. Isolation of a common receptor for coxsackie B viruses and adenovirus 2 and 5. Science 275, 1320–1323 (1997).

    Article  CAS  Google Scholar 

  14. Tomko, R.P., Xu, R. & Philipson, L. HCAR and MCAR: The human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc. Natl. Acad. Sci. USA 94, 3352–3356 (1997).

    Article  CAS  Google Scholar 

  15. Summerford, C. & Samulski, R.J. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J. Virol. 72, 1438–1445 (1998).

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Zabner, J., Freimuth, P., Puga, A., Fabrega, A. & Welsh, M.J. Lack of high affinity fiber receptor activity explains the resistance of ciliated airway epithelia to adenovirus infection. J. Clin. Invest. 100, 1144–1149 (1997).

    Article  CAS  Google Scholar 

  17. Mertens, G., Van der Schueren, B., Van den Berghe, H. & David, G. Heparan sulfate expression in polarized epithelial cells: The apical sorting of glypican (GPI-anchored proteoglycan) is inversely related to its heparan sulfate content. J. Cell Biol. 132, 487–497. (1996).

    Article  CAS  Google Scholar 

  18. Sannes, P., Burch, K.K., Khosla, J., McCarthy, K.J. & Couchman, J.R. Immunohistochemical localization of chondroitin sulfate, chondroitin sulfate proteoglycan, heparan sulfate proteoglycan, entactin, and laminin in basement membranes of postnatal developing and adult rat lungs. Am. J. Respir. Cell Mol. Biol. 8, 245–251 (1993).

    Article  CAS  Google Scholar 

  19. Bartlett, J.S., Samulski, R.J. & McCown, T.J. Selective and rapid uptake of adeno-associated virus type-2 (AAV-2) in brain. Hum. Cene Ther. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartlett, J., Samulski, R. Fluorescent viral vectors: A new technique for the pharmacological analysis of gene therapy. Nat Med 4, 635–637 (1998). https://doi.org/10.1038/nm0598-635

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0598-635

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing