Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hepatitis-B virus endemicity: heterogeneity, catastrophic dynamics and control

Abstract

Hepatitis-B virus infection is globally ubiquitous, but its distribution is very heterogeneous, with prevalence of serological markers in various nations ranging from less than 1% to more than 90%. We propose an explanation for this diversity using a mathematical model of hepatitis-B virus transmission dynamics that shows, for the first time, 'catastrophic' behavior using realistic epidemiological processes and parameters. Our major conclusion is that the prevalence of infection is largely determined by a feedback mechanism that relates the rate of transmission, average age at infection and age-related probability of developing carriage following infection. Using the model we identify possible, highly non-linear, consequences of chemotherapy and immunization interventions, for which the starting prevalence of carriers is the most influential, predictive quantity. Taken together, our results demand a re-evaluation of public health policy towards hepatitis-B.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Equilibrium proportion seropositive as determined by the basic reproduction number (R0).
Figure 2: The relationships between probability of carriage development, age and rate of infection.
Figure 3: The effects of an instantaneous change on (log) carrier prevalence.
Figure 4: The effect of immunization with respect to (log) carrier prevalence.

Similar content being viewed by others

References

  1. Maynard, J.E., Kane, M.A., Alter, M.J. & Hadler, S.C. Hepatitis B by immunisation: global perspectives. In Viral Hepatitis and Liver Disease (ed. Zuckerman, A.J.) 967–969 (Alan R. Liss Inc., New York, 1988).

    Google Scholar 

  2. Mayans, M.V. et al. Do bedbugs transmit hepatitis B? Lancet 343, 761–763 (1994).

    Article  Google Scholar 

  3. Mayans, M.V. et al. Risk factors for the transmission of hepatitis B virus to Gambian children. Lancet 336, 1107–1109 (1990).

    Article  Google Scholar 

  4. Whittle, H.C. et al. Hepatitis B virus infection in two Gambia villages. Lancet 1, 1203–1206 (1983).

    Article  CAS  Google Scholar 

  5. Schreeder, M.J. et al. Prevalence of hepatitis B in selected Alaskan Eskimo villages. Am. J. Epidemiol . 118, 543–549 (1983).

    Article  CAS  Google Scholar 

  6. Mortimer, P.P. & Miller, E. Antenatal screening and targeting should be sufficient in some countries. Br. Med. J. 314, 1036–1037 (1997).

    Article  CAS  Google Scholar 

  7. O'Connell, T. et al. Prevalence of hepatitis-B anti-core antibody in the Republic of Ireland. Epidemiol. Infect. 125, 701–704 (2000).

    Article  CAS  Google Scholar 

  8. Anderson, R.M. & May, R.M. Infectious Diseases of Humans: Dynamics and Control . (Oxford University Press, 1991).

    Google Scholar 

  9. Anderson, R.M., Medley, G.F. & Nokes, D.J. Preliminary analyses of the predicted impacts of various vaccination strategies on the transmission of hepatitis B virus. In The Control of Hepatitis B: The Role of Prevention in Adolescence. (ed. Bennet, D.L.) 95–130 (Gower Medical, London, 1992).

    Google Scholar 

  10. Edmunds, W.J., Medley, G.F. & Nokes, D.J. The transmission dynamics and control of hepatitis B virus in a developing country. Stats. Med. 15, 2215–2233 (1996).

    Article  CAS  Google Scholar 

  11. Zhao, S., Xu, Z. & Lu, Y. A mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China. Int. J. Epidemiol. 29, 744–752 (2000).

    Article  CAS  Google Scholar 

  12. Williams, J.R., Nokes, D.J., Medley, G.F. & Anderson, R.M. The transmission dynamics of hepatitis-B in the UK: a mathematical model for evaluating costs and effectiveness of immunisation programmes. Epidemiol. Infect. 116, 71–89 (1996).

    Article  CAS  Google Scholar 

  13. Edmunds, W.J. Universal or selective immunisation against hepatitis B virus in the United Kingdom? A review of recent cost-effectiveness studies. Comm. Dis. Pub. Health 1, 221–228 (1998).

    CAS  Google Scholar 

  14. Edmunds, W.J., Medley, G.F. & Nokes, D.J. Evaluating the cost-effectiveness of vaccination programmes: a dynamic perspective. Stats. Med. 18, 3263–3282 (1999).

    Article  CAS  Google Scholar 

  15. McMahon, B.J. et al. Acute hepatitis B virus infection: relation of age to the clinical expression of disease and subsequent development of the carrier state. J. Infect. Dis. 151, 599–603 (1985).

    Article  CAS  Google Scholar 

  16. Hyams, K.C. Risks of chronicity following acute hepatitis B virus infection: a review. Clin. Infect. Dis. 20, 992–1000 (1995).

    Article  CAS  Google Scholar 

  17. Edmunds, W.J., Medley, G.F., Nokes, D.J., Hall, A.J. & Whittle, H.C. The influence of age on the development of the hepatitis B carrier state. Proc. Roy. Soc. Lond. Ser. B. 253, 197–201 (1993).

    Article  CAS  Google Scholar 

  18. Panagiotopoulos, T., Antoniadou, I. & Valassi-Adam, E. Increase in congenital rubella occurrence after immunisation in Greece: retrospective survey and systematic review. Br. Med. J. 319, 1462–1467 (1999).

    Article  CAS  Google Scholar 

  19. Dushoff, J. Incorporating immunological ideas in epidemiological models. J. Theor. Biol. 180, 181–187 (1996).

    Article  CAS  Google Scholar 

  20. Dushoff, J., Huang, W. & Castillo-Chavez, C. Backwards bifurcations and catastrophe in simple models of fatal diseases. J. Math. Biol. 36, 227–248 (1998).

    Article  CAS  Google Scholar 

  21. Hadeler, K.P. & Castillo-Chavez, C. A core group model for disease transmission. Math. Biosci. 128, 41–58 (1995).

    Article  CAS  Google Scholar 

  22. van den Driessche, P. & Watmough, J. A simple SIS epidemic model with a backward bifurcation. J. Math. Biol. 40, 525–540 (2000).

    Article  CAS  Google Scholar 

  23. Wodarz, D. & Nowak, M.A. Specific therapy regimes could lead to long-term immunological control of HIV. Proc. Nat. Acad. Sci. USA 96, 14464–14469 (1999).

    Article  CAS  Google Scholar 

  24. Kuznetsov, Y.A. & Piccardi, C. Bifurcation analysis of periodic SEIR and SIR epidemic models. J. Math. Biol. 32, 109–21 (1994).

    Article  CAS  Google Scholar 

  25. Greenhalgh, D., Diekmann, O. & de Jong, M.C.M. Subcritical endemic steady states in mathematical models for animal infections with incomplete immunity. Math. Biosci. 165, 1–25 (2000).

    Article  CAS  Google Scholar 

  26. Simon, C.P. & Jacquez, J. Reproduction numbers and the stability of equilibria of SI models for heterogeneous populations. SIAM J. Appl. Math. 52, 541–576 (1996).

    Article  Google Scholar 

  27. Huang, W., Cooke, K.L. & Castillo-Chavez, C. Stability and bifurcation for a multiple-group model for the dynamics of HIV/AIDS transmission. SIAM J. Appl. Math. 52, 835–854 (1992).

    Article  Google Scholar 

  28. Hadeler, K.P. & van den Driessche, P. Backward bifurcation in epidemic control. Math. Biosci. 146, 15–35 (1997).

    Article  CAS  Google Scholar 

  29. Poston, T. & Stewart, I. Castrophe Theory and Its Application. (Pitman, San Francisco, 1978).

    Google Scholar 

  30. Hill, A.V. The immunogenetics of human infectious diseases. Ann. Rev. Immunol. 16, 593–617 (1998).

    Article  CAS  Google Scholar 

  31. Thursz, M.R. et al. Association between an MHC class II allele and clearance of hepatitis B virus in the Gambia. New Engl. J. Med. 332, 1995–1999 (1995).

    Article  Google Scholar 

  32. Edmunds, W.J. et al. Epidemiological patterns of hepatitis B virus (HBV) in highly endemic areas. Epidemiol. Infect. 117, 313–325 (1996).

    Article  CAS  Google Scholar 

  33. Wilson, J.N., Nokes, D.J. & Carman, W.F. Predictions of the emergence of vaccine-resistant hepatitis B in The Gambia using a mathematical model. Epidemiol. Infect. 124, 295–307 (2000).

    Article  CAS  Google Scholar 

  34. Gay, N.J. & Edmunds, W.J. Developed countries could pay for hepatitis B vaccination in developing countries. Br. Med. J. 316, 1457 (1998).

    Article  CAS  Google Scholar 

  35. Okoth, F.A. et al. Seroepidemiological study for HBV markers and anti-delta in Kenya. East Afr. Med. J. 68, 515–523 (1991).

    CAS  PubMed  Google Scholar 

  36. McLean, A.R. & Blumberg, B.S. Modelling the impact of mass vaccination against hepatitis B. I Model formulation and parameter estimation. Proc. Roy. Soc. Lond. B 256, 7–15 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham F. Medley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medley, G., Lindop, N., Edmunds, W. et al. Hepatitis-B virus endemicity: heterogeneity, catastrophic dynamics and control. Nat Med 7, 619–624 (2001). https://doi.org/10.1038/87953

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/87953

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing