Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long-term control of erythropoietin secretion by doxycycline in mice transplanted with engineered primary myoblasts

Abstract

We investigated tetracycline regulation of gene expression in an experimental model relevant to gene therapy. Mouse primary myogenic cells were engineered for doxycycline-inducible and skeletal muscle-specific expression of the mouse erythropoietin (Epo) cDNA by using two retrovirus vectors. Gene expression increased 200 fold in response to both myogenic cell differentiation and doxycycline stimulation. After transplantation of transduced cells into mouse skeletal muscles, Epo secretion could be iteratively switched on and off over a five-month period, depending on the presence or the absence of doxycycline in the drinking water. We conclude that tetracycline regulation provides a suitable control system for adjusting the delivery of therapeutic proteins from engineered tissues over long periods of time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551 (1992).

    Article  CAS  Google Scholar 

  2. Gossen, M., Bonin, A.L., Freundlieb, S. & Bujard, H. Inducuble gene expression systems for higher eukaryotic cells. Curr. Opin. Biotechnol. 5, 516–520 (1994).

    Article  CAS  Google Scholar 

  3. Furth, P.A. et al. Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc. Natl. Acad. Sci. U.S.A 91, 9302–9306 (1994).

    Article  CAS  Google Scholar 

  4. Shockett, P., Difilippantonio, M., Hellman, N. & Schatz, D. A modified tetracycline-regulated system provides autoregulatory, inducible gene expression in cultured cells and transgenic mice. Proc. Natl. Acad. Sci. USA 92, 6522–6526 (1995).

    Article  CAS  Google Scholar 

  5. Passman, R.S. & Fishman, G.I. Regulated expression of foreign genes in vivo after germline transfer. J. Clin. Invest. 94, 2421–2425 (1994).

    Article  CAS  Google Scholar 

  6. Efrat, S., Fusco-DeMane, D., Lemberg, H., Al Emran, O. & Wang, X. Conditional transformation of a pancreatic b-cell line derived from transgenic mice expressing a tetracycline-regulated oncogene. Proc. Natl. Acad. Sci. USA 92, 3576–3580 (1995).

    Article  CAS  Google Scholar 

  7. Schultze, N., Burki, Y., Lang, Y., Certa, U. & Bluethmann, H. Efficient control of gene expression by single step integration of the tetracycline system in transgenic mice. Nature Biotech. 14, 499–505 (1996).

    Article  CAS  Google Scholar 

  8. Gossen, M. et al. Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769 (1995).

    Article  CAS  Google Scholar 

  9. Paulus, W., Baur, I., Boyce, P.M., Breakefield, X.O. & Reeves, S.A. Self-contained, tetracycline-regulated retroviral system for gene delivery to mammalian cells. J. Virol. 70, 62–67 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. lida, A., Chen, S.T., Friedmann, T. & Yee, J.K. Inducible gene expression by retro-virus-mediated transfer of a modified tetracycline-regulated system. J. Virol. 70, 6054–6059 (1996).

    Google Scholar 

  11. Hwang, J.J., Scuric, Z. & Anderson, W.F. Novel retroviral vector transferring a suicide gene and a selectable marker gene with enhanced gene expression by using a tetracycline-responsive expression system. J. Virol. 70, 8138–8141 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hoshimaru, M., Ray, J., San, D.W.Y. & Cage, F.H. Differentiation of the immortalized adult neuronal progenitor cell line HC2S2 into neurons by regulatable suppression of the v-myc oncogene. Proc. Natl. Acad. Sci. USA 93, 1518–1523 (1996).

    Article  CAS  Google Scholar 

  13. Hofman, A., Nolan, G. & Blau, H.B. Rapid retroviral delivery of tetracycline-inducible genes in a single autoregulatory cassette. Proc. Natl. Acad. Sci. USA 93, 5185–5190 (1996).

    Article  Google Scholar 

  14. Li, Z. & Paulin, D. High level desmin expression depends on a muscle-specific enhancer. J. Biol. Chem. 266, 6562–6570 (1991).

    CAS  PubMed  Google Scholar 

  15. Naffakh, N. et al. Long-term secretion of therapeutic proteins from genetically-modified skeletal muscles. Human Gene Ther. 7, 11–21 (1996).

    Article  CAS  Google Scholar 

  16. Danos, O. & Mulligan, R.C. Safe and efficient generation of recombinant retro-viruses with amphotropic and ecotropic host ranges. Proc. Natl. Acad. Sci. USA 85, 6460–6464 (1988).

    Article  CAS  Google Scholar 

  17. Cosset, F.L., Takeuchi, Y., Battini, J.L., Weiss, R.A. & Collins, M. K. High-titer packaging cells producing recombinant retroviruses resistant to human serum. J. Virol. 69, 7430–7436 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cone, R.D., Weber-Benarous, A., Baorto, D. & Mulligan, R.C. Regulated expression of a complete human β-globin gene encoded by a transmissible retrovirus vector. Mol. Cell. Biol. 7, 887–897 (1987).

    Article  CAS  Google Scholar 

  19. Guild, B.C., Finer, M.H., Housman, D.E. & Mulligan, R.C. Development of retrovirus vectors useful for expressing genes in cultured murine embryonal cells and hematopoietic cells in vivo. J. Virol. 62, 3795–3801 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Soriano, P., Friedrich, G. & Lawinger, P. Promoter interactions in retrovirus vectors introduced into fibroblasts and embryonic stem cells. J. Virol. 65, 2314–2319 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Emerman, M. & Temin, H.M. Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell 39, 459–467 (1984).

    Article  CAS  Google Scholar 

  22. Emerman, M. & Temin, H.M. Quantitative analysis of gene suppression in integrated retrovirus vectors. Mol. Cell. Biol. 6, 792–800 (1986).

    Article  CAS  Google Scholar 

  23. Bauer, T.R. Jr., Osborne, W.R.A., Kwok, W.W. & Hickstein, D.D. Expression from leukocyte integrin promoters in retroviral vectors. Human Gene Ther. 5, 709–716 (1994).

    Article  CAS  Google Scholar 

  24. Vile, R., Miller, N., Chernajovsky, Y. & Hart, I. A comparison of the properties of different retroviral vectors containing the murine tyrosinase promoter to achieve transcriptionally targeted expression of the HSVtk or IL2 genes. Gene Ther. 1, 307–316 (1994).

    CAS  PubMed  Google Scholar 

  25. Yee, J.K. et al. Gene expression from transcriptionally disabled retroviral vectors. Proc. Natl. Acad. Sci. USA 84, 5199–5201 (1987).

    Article  Google Scholar 

  26. Yu, S. et al. Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc. Natl. Acad. Sci. USA 83, 3194–3198 (1986).

    Article  CAS  Google Scholar 

  27. Soriano, P., Cone, R.D., Mulligan, R.C. & Jaenisch, R. Tissue-specific and ectopic expression of genes introduced into transgenic mice by retroviruses. Science 234, 1409–1413 (1986).

    Article  CAS  Google Scholar 

  28. Jaenisch, R. et al. Chromosomal position and activation of retroviral genomes inserted into the germ line of mice. Cell 24, 519–529 (1981).

    Article  CAS  Google Scholar 

  29. Hoeben, R.C., Migchielsen, A.A., van der Jagt, R.C.M., van Ormondt, H. & van der Erb, A.J. Inactivation of the Moloney murine leukemia virus long terminal repeat in murine fibroblast cell lines is associated with methylation and dependent on its chromosomal position. J. Virol. 65, 904–912 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Metcalf, D. The molecular control of blood Cells (Harvard Univ. Press, Cambridge, Massachussets, 1988).

    Google Scholar 

  31. Salmonson, T., Danielson, B.G. & Wikstrom, B. The pharmacokinetics of recombinant erythropoietin after intravenous and subcutaneous administration to healthy subjects. Br. J. Pharmacol. 29, 703–713 (1990).

    Article  Google Scholar 

  32. Jensen, J.D., Jensen, L.W. & Madsen, J.K. The pharmacokinetics of recombinant human erythropoietin after subcutaneous injection at different sites. Eur. J. Clin. Pharmacol. 46, 333–337 (1994).

    Article  CAS  Google Scholar 

  33. Klein, J. Cellular and subcellular distribution of H-2 antigens. in Biology of the mouse histocompatibility complex (Springer Verlag, Berlin, pp 329–383. 1975).

    Chapter  Google Scholar 

  34. Madan, A. & Curtin, P.T. A 24-base-pair sequence 3′ to the human erythropoietin gene contains a hypoxia-responsive transcriptionat enhancer. Proc. Natl. Acad. Sci. USA 90, 3928–3932 (1993).

    Article  CAS  Google Scholar 

  35. Madan, A., Lin, C., Hatch II, S.L. & Curtin, P. T. Regulated basal, inducible, and tissue-specific human erythropoietin gene expression in transgenic mice requires multiple cis DMA sequences. Blood 85, 2735–2741 (1995).

    CAS  PubMed  Google Scholar 

  36. Beck, I., Weinmann, R. & Caro, J. Characterization of hypoxia-responsive enhancer in the human erythropoietin gene shows presence of hypoxia-inducible 120-Kd nuclear DNA-binding protein in erythropoietin-producing and nonproducing cells. Blood 82, 704–711 (1993).

    CAS  PubMed  Google Scholar 

  37. Wang, G.L. & Semenza, G.L. General involvment of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc. Natl. Acad. Sci. USA 90, 4304–4308 (1993).

    Article  CAS  Google Scholar 

  38. Naffakh, N. et al. Sustained delivery of erythropoietin in mice by autologous implants of genetically-modified skin fibroblasts. Proc. Natl. Acad. Sci. USA 92, 3194–3198 (1995).

    Article  CAS  Google Scholar 

  39. Sakaguchi, M. et al. The expression of functional erythropoietin receptors on an interleukin-3 dependent cell line. Biochem. Biophys. Res. Commun. 146, 7 (1987).

    Article  CAS  Google Scholar 

  40. Ferry, N., Duplessis, O., Houssin, D., Danos, O. & Heard, J.M. Retroviral-mediated gene transfer into hepatocytes in vivo. Proc. Natl. Acad. Sci. USA 88, 8377–8381 (1991).

    Article  CAS  Google Scholar 

  41. Wright, W.E., Sasoon, D.A. & Lin, V.K., Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell 56, 607–617 (1989).

    Article  CAS  Google Scholar 

  42. Jacqué, J.M. et al. Permanent occupancy of the human immunodeficiency virus type 1 enhancer by NF-κB is needed for persistent viral replication in monocytes. J. Virol. 70, 2930–2938 (1996).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohl, D., Naffakh, N. & Heard, J. Long-term control of erythropoietin secretion by doxycycline in mice transplanted with engineered primary myoblasts. Nat Med 3, 299–305 (1997). https://doi.org/10.1038/nm0397-299

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0397-299

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing