Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HLA–DR4 and HLA–DR10 motifs that carry susceptibility to rheumatoid arthritis bind 70–kD heat shock proteins

Abstract

Most patients with rheumatoid arthritis express particular HLA–DR alleles. The DRβI chains of these alleles share a highly homologous amino acid motif, in their third hypervariable (HV3) region, and this motif seems to help the development of rheumatoid arthritis via unknown mechanisms. In an attempt to identify a ligand of this motif, we screened bacterial proteins. HV3 peptides from HLA–DRB1 alleles containing a QKRAA or RRRAA motif bound the 70–kD heat shock protein (HSP) from Escherichia coli, dnaK. Inlymphoblastoid cells homozygous for these same HLA–DRB1 alleles the constitutive 70–kD HSP, HSP73, that targets selected proteins to lysosomes coprecipitated with HLA–DR. Thus, the QKRAA and RRRAA amino acid motifs of HLA–DR mediate binding of HLA–DR to HSP73. This property may influence the intracellular route, processing or peptide associations of the HLA–DRβ1 chain in these two rheumatoid arthritis–associated alleles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gregersen, P.K., Silver, J. & Winchester, R.J. The shared epitope hypothesis: An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 30, 1205–1213 (1987).

    Article  CAS  Google Scholar 

  2. Stastny, P. Association of the B-Cell alloantigen DRw4 with rheumatoid arthritis. N. Engl. J. Med. 298, 869–871 (1978).

    Article  CAS  Google Scholar 

  3. Boki, K. et al. HLA class II sequence polymorphisms and susceptibility to rheumatoid arthritis in Greeks. Arthritis Rheum. 35, 749–755 (1992).

    Article  CAS  Google Scholar 

  4. Willkens, R., Nepom, G., Marks, C., Nettles, J. & Nepom, B. Association of HLA-Dwl6 with rheumatoid arthritis in Yakima Indians. Arthritis Rheum. 34, 43–47 (1991).

    Article  CAS  Google Scholar 

  5. Ollier, W. & Thomson, W. Population genetics of rheumatoid arthritis. Rheum. Dis. Clin. N. Am. 18, 761–785 (1992).

    Google Scholar 

  6. Wucherpfennig, K.W. & Strominger, J. Selective binding of self peptides to disease associated major histocompatibility complex molecules: A mechanism for MHC linked susceptibility to human autoimmune diseases. J. Exp. Med. 181, 1597–1601 (1995).

    Article  CAS  Google Scholar 

  7. Weyand, C.M., Oppitz, U., Hicok, K. & Goronzy, J.J. Selection of T Cell receptor Vb elements by HLA-DR determinants predisposing to rheumatoid arthritis. Arthritis Rheum. 35, 990–998 (1992).

    Article  CAS  Google Scholar 

  8. Albani, S. et al. Positive selection in autoimmunity: Abnormal immune responses to a bacterial dnaJ antigenic determinant in patients with early rheumatoid arthritis. Nature Med. 1, 448–452 (1995).

    Article  CAS  Google Scholar 

  9. Roudier, J. et al. Tolerance to a self peptide from the third hypervariable region of the Eβs chain. Eur. J. Immunol. 21, 2063–2067 (1991).

    Article  CAS  Google Scholar 

  10. Salvat, S. et al. Tolerance to a self peptide from the third hypervariable region of HLA-DRB1*0401 in rheumatoid arthritis patients and normal subjects. J. Immunol. 153, 5321–5329 (1994).

    CAS  PubMed  Google Scholar 

  11. Weyand, C.M., McCarthy, T. & Goronzy, J.J. Correlation between disease phenotype and genetic heterogeneity in rheumatoid arthritis. J. Clin. Invest. 95, 2120–2126 (1995).

    Article  CAS  Google Scholar 

  12. Bardwell, J.C. & Craig, E. Major heat shock gene of Drosophila and the Escherichia coli heat inducible dnaK gene are homologous. Proc. Natl. Acad. Sci. USA 81, 848–852 (1984).

    Article  CAS  Google Scholar 

  13. Bardwell, J.C. et al. The nucleotide sequence of the Escherichia coli K12 dnaJ+ gene: A gene that encodes a heat shock protein. J. Biol. Chem. 261, 1782–1785 (1986).

    CAS  PubMed  Google Scholar 

  14. Silver, P. & Way, J. Eukaryotic dnaJ homologs and the specificity of Hsp 70 activity. Cell 74, 5–6 (1993).

    Article  CAS  Google Scholar 

  15. Cellier, M. F. et al. Cloning and characterization of the BruCella ovis heat shock protein dnaK functionally expressed in Escherichia coli. J. Bacterial. 174, 8032–8042 (1992).

    Article  Google Scholar 

  16. Gomes, S.L., Gober, J. & Shapiro, L. Expression of the Caulobacter heat shock gene dnaK is developmentally controlled during growth at normal temperatures. J. Bacterial. 172, 3051-3059 (1990).

    Article  CAS  Google Scholar 

  17. Van Asseldonk, M., Simons, A., Visser, H., de Vos, W.M. & Simons, G. Cloning, nucleotide sequence and regulatory analysis of the Lactococcus lactis dnaJ gene. J. Bacterial. 175, 1637–1644 (1993).

    Article  CAS  Google Scholar 

  18. Krishnan, H.B. & Pueppke, S.G. nolC, a Rhizobium fredii gene involved in cultivar-specific nodulation of soybean shares homology with a heat shock gene. Mol. Micmbiol. 3, 737–745 (1991).

    Article  Google Scholar 

  19. Gething, M.J. & Sambrook, J. Protein folding in the Cell. Nature 355, 33–45 (1992).

    Article  CAS  Google Scholar 

  20. Terlecky, S., Chiang, H., Olson, T. & Dice, J.F. Protein and peptide binding and stimulation of in vitro lysosomal proteolysis by the 73kDa heat shock cognate protein. J. Biol. Chem. 267, 9202–9209 (1992).

    CAS  PubMed  Google Scholar 

  21. Cresswell, P., ssembly, transport and function of MHC class II molecules. Annu. Rev. Immunol. 12, 259–293 (1994).

    Article  CAS  Google Scholar 

  22. Roudier, J., Petersen, J., Rhodes, G.I., Luka, J. & Carson, D.A. Susceptibility to rheumatoid arthritis maps to a T Cell epitope shared by the HI. A-Dw4 DRb 1 chain and the Epstein Barr virus glycoprotein gp110. Proc. Natl. Acad. Sci. USA 86, 5104–5108 (1989).

    Article  CAS  Google Scholar 

  23. Houghten, R., Chang, W. & Li, C.H. Human b endorphin. Synthesis and characterization of analogs iodinated and tritiated at residues 1 and 27. Int. J. Pept. Protein Res. 16, 311–315 (1980).

    Article  CAS  Google Scholar 

  24. Goyert, S. & Silver, J. Further characterization of HLA-DS molecules: implications for studies assessing the role of human la molecules in Cell interactions and disease susceptibility. Proc. Natl. Acad. Sci. USA 80, 5719–5723 (1983).

    Article  CAS  Google Scholar 

  25. Escola, J.M., Grivel, J.C., Chavrier, P. & Gorvel, J.P. Different endocytic compartments are involved in the tight association of class II molecules with processed hen egg lysozyme and ribonuclease A in B Cells. J. Cell Sci. 108, 2337–2345 (1995).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auger, I., Escola, J., Gorvel, J. et al. HLA–DR4 and HLA–DR10 motifs that carry susceptibility to rheumatoid arthritis bind 70–kD heat shock proteins. Nat Med 2, 306–310 (1996). https://doi.org/10.1038/nm0396-306

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0396-306

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing