Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antifibrinolytic activity of apolipoprotein(a) in vivo: Human apolipoprotein(a) transgenic mice are resistant to tissue plasminogen activator-mediated thrombolysis

An Erratum to this article was published on 01 June 1995

This article has been updated

Abstract

The extensive homology between apolipoprotein(a) and plasminogen has led to the hypothesis that the increased risk for atherosclerosis, cardiac disease and stroke associated with elevated levels of apolipoprotein(a) may reflect modulation of fibrinolysis. We have investigated the role of apolipoprotein(a) on clot lysis in transgenic mice expressing the human apolipoprotein(a) gene. These mice develop fatty streak lesions resembling early lesions of human atherosclerosis. Pulmonary emboli were generated in mice by injection, through the right jugular vein, of a human platelet-rich plasma clot radiolabelled with technetium-99m-labelled antifibrin antibodies. Tissue plasminogen activator was introduced continuously via the right jugular vein. Clot lysis, determined by ex vivo imaging, was depressed in mice carrying the apolipoprotein(a) transgene relative to their sex-matched normal littermates. These results directly demonstrate an in vivo effect of apolipoprotein(a) on fibrinolysis, an effect that may contribute to the pathology associated with elevated levels of this protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Change history

  • 01 June 1995

    HIV-speciflc cytotoxic T-cells in HIV-exposed but uninfected Gambian women S. Rowland-Jones, J. Sutton, K. Ariyoshi, T. Dong, F. Gotch, S. Mcadam, D. Whitby, S. Sabally, A. Gallimore, T. Corrah, M. Takiguchi, T. Schultz, Andrew Mcmichael & H. Whittle Nature Medicine 1, 59–64, 1995. An error in typography resulted in the incorrect printing of m for the Greek character μ.

References

  1. Utermann, G. The mysteries of lipoproteln (a). Science 246, 904–910 (1989).

    Article  CAS  Google Scholar 

  2. Scanu, A.M. & Fless, G.M. Lipoprotein (a): heterogeneity and biological significance. J. clin. Invest. 85, 1709–1715 (1990).

    Article  CAS  Google Scholar 

  3. Scanu, A.M., Lawn, R.M. & Berg, K. Lipoprotein (a) and atherosclerosis: Davis Conference. Ann. intern. Med. 115, 209–218 (1991).

    Article  CAS  Google Scholar 

  4. McLean, J.W. et. al. Human apolipoprotein (a): cDNA sequence of apolipoprotein (a) is homologous to plasminogen. Nature 300, 132–139 (1987).

    Article  Google Scholar 

  5. Zysow, B.R. & Lawn, R.M. The relationship of lipoprotein (a) to hemostasis. Curr. Opin. Lipidology 4, 484–489 (1993).

    Article  CAS  Google Scholar 

  6. Lawn, R.M. et. al. Atherogenesis in transgenic mice expressing human apolipoprotein (a). Nature 360, 670–672 (1992).

    Article  CAS  Google Scholar 

  7. Chiesa, G. et. al. Reconstitution of lipoprotein (a) by infusion of human LDL into transgenic mice expressing human apolipoprotein (a). J. biol. Chem. 267, 24369–24374 (1992).

    CAS  PubMed  Google Scholar 

  8. Hajjar, K.A., Gavish, D., Breslow, J.L. & Nachman, R.L. Lipoprotein (a) modulation of endothelial cell surface fibrinolysis and its potential role in atherosclerosis. Nature 339, 303–305 (1989).

    Article  CAS  Google Scholar 

  9. Stassen, J.M., Lijnin, H.R., Kieckens, L. & Collen, D. Small animal thrombosis models for the evaluation of thrombolytic agents. Circulation, Suppl IV 83, 65–72 (1991).

    Google Scholar 

  10. Carmelliet, P. et. al. Plasminogen activator inhibitor-1 gene deficient mice. II. Effects on hemostasis, thrombosis and thrombolysis. J. clin. Invest. 92, 2756–2760 (1993).

    Article  Google Scholar 

  11. Miles, L.A., Fless, G.M., Levin, E.G., Scanu, A.M. & Plow, E.F. A potential basis for the thrombotic risks associated with lipoprotein (a). Nature 339, 301–303 (1989).

    Article  CAS  Google Scholar 

  12. Edelberg, J.M., Gonzalez-Gronow, M. & Pizzo, S.V. Lipoprotein (a) inhibition of plasminogen activation by tissue-type plasminogen activator. Thromb Res 57, 155–162 (1990).

    Article  CAS  Google Scholar 

  13. Loscalzo, J., Weinfeld, M., Fless, G.M. & Scanu, A.M. Lipoprotein (a), fibrin binding, and plasminogen activation. Arteriosclerosis 10, 240–245 (1990).

    Article  CAS  Google Scholar 

  14. Liu, J.N., Harpel, P.C., Pannell, R. & Gurewich, V. Lipoprotein (a): A kinetic study of its influence on fibrin-dependent plasminogen activation by prourokinase or tissue plasminogen activator. Biochemistry 32, 9694–9700 (1993).

    Article  CAS  Google Scholar 

  15. Leerink, C. et. al. Lysine-binding heterogeneity of Lp (a): Consequences for fibrin binding and inhibition of plasminogen. Thromb. Haemost. 68. 185–188 (1992).

    Article  CAS  Google Scholar 

  16. Halvorsen, S., Skjonsberg, O.H., Berg, K., Ruyter, R. & Godal, H.C. Lp (a) lipoprotein inhibit the fibrinolytic system? Thromb. Res. 68, 223–232 (1992).

    Article  CAS  Google Scholar 

  17. Garcia-Frade, L.J. et. al. Fibrinolytic parameters and lipoprotein (a) levels in plasma of patients with coronary artery disease. Thromb. Res. 63, 407–418 (1991).

    Article  CAS  Google Scholar 

  18. Heinrich, H., Sandkamp, M., Kokott, R., Schulte, H. & Assmann, G. Relationship of lipoprotein (a) to variables of coagulation and fibrinolysis in a healthy population. Clin. Chem. 37, 1950–1954 (1991).

    CAS  PubMed  Google Scholar 

  19. Oshima, S. et al. Transient increase of plasma lipoprotein (a) in patients with unstable angina pectoris. Does lipoprotein (a) alter fibrinolysis. Arterioscler. Thromb. 11, 1772–1777 (1991).

    Article  CAS  Google Scholar 

  20. Glueck, C.J. et. al. Relationship between lipoprotein (a), lipids, apolipoproteins, basal and stimulated fibrinolytic regulators, and D-dimer. Metabolism 42, 236–246 (1993).

    Article  CAS  Google Scholar 

  21. Scanu, A.M., Praffinger, D., Lee, J.C. & Hinman, J. A single point mutation (Trp72→Arg) in human apo (a) kringle 4–37 associated with a lysine binding defect in Lp (a). Biochim. Biophys. Acta. 1227, 41–45 (1994).

    Article  CAS  Google Scholar 

  22. von Hodenberg, E. et. al. Effects of lipoprotein (a) on success rate of thrombolytic therapy in acute myocardial infarction. Am. J. Cardiol. 67, 1349–1353 (1991).

    Article  CAS  Google Scholar 

  23. Moliterno, D.J. et. al. Relation of plasma lipoprotein (a) to infarct artery patency in survivors of myocardial infarction. Circulation 88, 935–940 (1993).

    Article  CAS  Google Scholar 

  24. Kudryk, B., Rohoza, A., Ahadi, M., Nechtin, J. & Wiebe, M.E. The specificity of a monoclonal antibody for the NH2-terminal region of fibrin. Molec. Immun. 21, 89–94 (1984).

    Article  CAS  Google Scholar 

  25. Rosenbrough, S.F. et al Thrombus imaging with indium-111 and iodine-131-labelled fibrin-specific monoclonal antibody and its F (ab)'2 and Fab frag. J. nucl. Med. 29, 1212–1222 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palabrica, T., Liu, A., Aronovitz, M. et al. Antifibrinolytic activity of apolipoprotein(a) in vivo: Human apolipoprotein(a) transgenic mice are resistant to tissue plasminogen activator-mediated thrombolysis. Nat Med 1, 256–259 (1995). https://doi.org/10.1038/nm0395-256

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0395-256

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing