Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tumor-cell resistance to death receptor–induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax

Abstract

The importance of Bax for induction of tumor apoptosis through death receptors remains unclear. Here we show that Bax can be essential for death receptor–mediated apoptosis in cancer cells. Bax-deficient human colon carcinoma cells were resistant to death-receptor ligands, whereas Bax-expressing sister clones were sensitive. Bax was dispensable for apical death-receptor signaling events including caspase-8 activation, but crucial for mitochondrial changes and downstream caspase activation. Treatment of colon tumor cells deficient in DNA mismatch repair with the death-receptor ligand apo2 ligand (Apo2L)/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selected in vitro or in vivo for refractory subclones with Bax frameshift mutations including deletions at a novel site. Chemotherapeutic agents upregulated expression of the Apo2L/TRAIL receptor DR5 and the Bax homolog Bak in Bax−/− cells, and restored Apo2L/TRAIL sensitivity in vitro and in vivo. Thus, Bax mutation in mismatch repair–deficient tumors can cause resistance to death receptor–targeted therapy, but pre-exposure to chemotherapy rescues tumor sensitivity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HCT116 human colon cancer cells require Bax for death receptor–induced apoptosis.
Figure 2: DISC assembly, caspase-8 activation and Bid cleavage do not require Bax, but subsequent proteolytic cleavage events do.
Figure 3: Bax+/− cells give rise to Bax-mutant colonies under Apo2L/TRAIL selection.
Figure 4: SW48 cells (wild type for Bax) give rise to Bax-mutant clones under Apo2L/TRAIL selection.
Figure 5: Etoposide and camptothecin sensitize Bax−/− cells to Apo2L/TRAIL.
Figure 6: Xenograft studies of HCT116 cells injected s.c. in nude mice.

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Ashkenazi, A. & Dixit, V.M. Death receptors: signaling and modulation. Science 281, 1305–1308 (1998).

    Article  CAS  Google Scholar 

  2. Green, D. Apoptotic pathways: paper wraps stone blunts scissors. Cell 102, 1–4 (2000).

    Article  CAS  Google Scholar 

  3. Li, H., Zhu, H., Xu, C.-J. & Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway to apoptosis. Cell 94, 491–501 (1998).

    Article  CAS  Google Scholar 

  4. Luo, X., Budihardjo, I., Zou, H., Slaughter, C. & Wang, X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481–490 (1998).

    Article  CAS  Google Scholar 

  5. Gross, A. et al. Caspase cleaved Bid targets mitochondria and is required for cytochrome c release, while Bcl-XL prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem. 274, 1156–1163 (1999).

    Article  CAS  Google Scholar 

  6. Roy, S. & Nicholson, D. Cross-talk in cell death signaling. J. Exp. Med. 192, F21–F25 (2000).

    Article  CAS  Google Scholar 

  7. Eskes, R., Desagher, S., Antonsson, B. & Martinou, J. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol. Cell. Biol. 20, 929–935 (2000).

    Article  CAS  Google Scholar 

  8. Wei, M. et al. tBID, a membrane targeted death ligand, oligomerizes Bak to release cytochrome c. Genes Dev. 14, 2060–2071 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yin, X.-M. et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400, 886–891 (1999).

    Article  CAS  Google Scholar 

  10. Lindsten, T. et al. The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues. Molec. Cell 6, 1389–1399 (2000).

    Article  CAS  Google Scholar 

  11. Wei, M.C. et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001).

    Article  CAS  Google Scholar 

  12. Nicholson, D.W. From bench to clinic with apoptosis-based therapeutic agents. Nature 407, 810–816 (2000).

    Article  CAS  Google Scholar 

  13. Lengauer, C., Kinzler, K. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    Article  CAS  Google Scholar 

  14. Rampino, N. et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275, 967–969 (1997).

    Article  CAS  Google Scholar 

  15. Zhang, L., Yu, J., Park, B., Kinzler, K. & Vogelstein, B. Role of BAX in the apoptotic response to anticancer agents. Science 290, 989–992 (2000).

    Article  CAS  Google Scholar 

  16. Ionov, Y., Yamamoto, H., Krajewski, S., Reed, J.C. & Perucho, M. Mutational inactivation of the proapoptotic gene Bax confers selective advantage during tumor clonal evolution. Proc. Natl. Acad. Sci. USA 97, 10872–10877 (2000).

    Article  CAS  Google Scholar 

  17. Perucho, M. Cancer of the microsatellite mutator phenotype. Biol. Chem. 377, 675–684 (1996).

    CAS  PubMed  Google Scholar 

  18. Kischkel, F.C. et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14, 5579–5588 (1995).

    Article  CAS  Google Scholar 

  19. Kischkel, F.C. et al. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12, 611–620 (2000).

    Article  CAS  Google Scholar 

  20. Sprick, M.R. et al. FADD/MORT1 and Caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 12, 599–609 (2000).

    Article  CAS  Google Scholar 

  21. Bodmer, J.L. et al. TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nature Cell Biol. 2, 241–243 (2000).

    Article  CAS  Google Scholar 

  22. Boldin, M., Goncharov, T., Goltsev, Y. & Wallach, D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in FAS/APO-1-and TNF receptor-induced cell death. Cell 85, 803–815 (1996).

    Article  CAS  Google Scholar 

  23. Muzio, M. et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recurited to the CD95 (Fas/APO1) death-inducing signaling complex. Cell 85, 817–827 (1996).

    Article  CAS  Google Scholar 

  24. Evan, G. & Littlewood, T. A matter of life and cell death. Science 281, 1317–1322 (1998).

    Article  CAS  Google Scholar 

  25. Wu, G.S. et al. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nature Genet. 17, 141–143 (1997).

    Article  CAS  Google Scholar 

  26. Scaffidi, C. et al. Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J. Biol. Chem. 274, 22532–22538 (1999).

    Article  CAS  Google Scholar 

  27. Pitti, R. et al. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 396, 699–703 (1998).

    Article  CAS  Google Scholar 

  28. Djerbi, M. et al. The inhibitor of death receptor signaling, FLICE-inhibitory protein defines a new class of tumor progression factors. J. Exp. Med. 190, 1025–1031 (1999).

    Article  CAS  Google Scholar 

  29. Medema, J., de Jong, J., van Hall, T., Melief, C. & Offringa, R. Immune escape of tumors in vivo by expression of cellular FLICE-inhibitory protein. J. Exp. Med. 190, 1033–1038 (1999).

    Article  CAS  Google Scholar 

  30. Ashkenazi, A. et al. Safety and anti-tumor activity of recombinant soluble Apo2 ligand. J. Clin. Invest. 104, 155–162 (1999).

    Article  CAS  Google Scholar 

  31. Lawrence, D. et al. Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nature Med. 7, 383–385 (2001).

    Article  CAS  Google Scholar 

  32. Qin, J.Z., Chaturvedi, V., Bonish, B. & Nickoloff, B.J. Avoiding premature apoptosis of normal epidermal cells. Nature Med. 7, 385–386 (2001).

    Article  CAS  Google Scholar 

  33. Ashkenazi, A. & Dixit, V.M. Apoptosis control by death and decoy receptors. Curr. Opin. Cell Biol. 11, 255–260 (1999).

    Article  CAS  Google Scholar 

  34. Walczak, H. et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nature Med. 5, 157–163 (1999).

    Article  CAS  Google Scholar 

  35. Chinnaiyan, A.M. et al. Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc. Natl. Acad. Sci. USA 97, 1754–1759 (2000).

    Article  CAS  Google Scholar 

  36. Roth, W. et al. Locoregional Apo2L/TRAIL eradicates intracranial human malignant glioma xenografts in athymic mice in the absence of neurotoxicity. Biochem. Biophys. Res. Commun. 265, 1999 479–483 (1999).

    Article  CAS  Google Scholar 

  37. Pollack, I.F., Erff, M. & Ashkenazi, A. Direct Stimulation of apoptotic signaling by soluble Apo2L/tumor necrosis factor-related apoptosis-inducing ligand leads to selective killing of glioma cells. Clin. Cancer Res. 7, 1362–1369 (2001).

    CAS  PubMed  Google Scholar 

  38. Chuntharapai, A. et al. Isotype-dependent inhibition of tumor growth in vivo by monoclonal antibodies to death receptor 4. J. Immunol. 166, 4891–4898 (2001).

    Article  CAS  Google Scholar 

  39. Ichikawa, K. et al. Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nature Med. 7, 954 (2001).

    Article  CAS  Google Scholar 

  40. Nicoletti, I., Migliorati, G., Pagliacci, M.C., Grignani, F. & Riccardi, C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Meth. 139, 271–279 (1991).

    Article  CAS  Google Scholar 

  41. Chinnaiyan, A.M., O'Rourke, K., Lane, B.R. & Dixit, V.M. Interaction of CED-4 with CED-3 and CED-9: A molecular framework for cell death. Science 275, 1122–1126 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Vogelstein for the Bax+/− and Bax−/− cell lines; S. Sherwood for JC-1 and caspase-3 analysis; S. Leung and R. Pai for Apo2L/TRAIL, K. O'Rourke for the Bax plasmid; and members of the Ashkenazi, Dixit and Polakis labs for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avi Ashkenazi.

Ethics declarations

Competing interests

All authors are employees of Genentech. H.L., D.L., K.T., J.M., P.S., S.F., R.S., D.S. and A.A. own stock or stock options in Genentech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LeBlanc, H., Lawrence, D., Varfolomeev, E. et al. Tumor-cell resistance to death receptor–induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat Med 8, 274–281 (2002). https://doi.org/10.1038/nm0302-274

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0302-274

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing