Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Suppression of SPARC expression by antisense RNA abrogates the tumorigenicity of human melanoma cells

Abstract

Acquisition of invasive/metastatic potential is a key event in tumor progression. Cell surface glycoproteins and their respective matrix ligands have been implicated in this process. Recent evidence reveals that the secreted glycoprotein SPARC (secreted protein, acidic and rich in cysteine) is highly expressed in different malignant tissues. The present study reports that the suppression of SPARC expression by human melanoma cells using a SPARC antisense expression vector results in a significant decrease in the in vitro adhesive and invasive capacities of tumor cells, completely abolishing their in vivo tumorigenicity. This is the first evidence that SPARC plays a key role in human melanoma invasive–metastatic phenotype development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stetler-Stevenson, W.G., Aznavoorian, S. & Liotta, L.A., Tumor Cell interactions with the extra Cellular matrix during invasion and metastasis. Annu. Rev. Cell Biol. 9, 541–573 (1993).

    Article  CAS  Google Scholar 

  2. Stetler-Stevenson, W.G., Liotta, L.A. & Kleiner, D.E., Cellular matrix 6: Role of matrix metalloproteinases in tumor invasion and metastasis. FASEBJ. 7, 1434–1441 (1993).

    Article  CAS  Google Scholar 

  3. Albelda, S.M. Role of integrins and other Cell adhesion molecules in tumor progression and metastasis. Lab. Invest. 68, 4–17 (1993).

    CAS  Google Scholar 

  4. Wewer, U.M., Taraboletti, G., Sobel, M.E., Albrechtsen, R. & Liotta, L.A. Role of laminin receptors in tumor Cell migration. Cancer Res. 47, 5691–5698 (1987).

    CAS  PubMed  Google Scholar 

  5. Lane, T.F. & Sage, E.H. The biology of SPARC, a protein that modulates Cell-matrix interactions. FASEB J. 8, 163–173 (1994).

    Article  CAS  Google Scholar 

  6. Sage, E.H. & Bornstein, P., Cellular proteins that modulate Cell-matrix interactions. J. Biol. Chem. 266, 14831–14834 (1991).

    CAS  PubMed  Google Scholar 

  7. Tremble, P.M., Lane, T.F., Sage, E.H. & Werb, Z. SPARC, a secreted protein associated with morphogenesis and tissue remodelling, induces expression of metalloproteinases in fibroblasts through a novel extraCellular matrix-dependent pathway. J. Cell Biol. 121, 1433–1444 (1993).

    Article  CAS  Google Scholar 

  8. Porter, P.L., Sage, E.H., Lane, T.F., Funk, S.H. & Gown, A.M. Distribution of SPARC in normal and neoplastic tissue. J. Histochem. Cytochem. 43, 791–800 (1995).

    Article  CAS  Google Scholar 

  9. Podhajcer, O.L. et al. Comparative expression of the SPARC and stromelysin-3 genes in mammary tumors. Breast 5, 13–20 (1996).

    Article  Google Scholar 

  10. Bellahcene, A. & Castronovo, V. Increased expression of osteonectin and osteopontin, two bone matrix proteins, in human breast cancer. Am. J. Pathol. 146, 95–100 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Porte, H. et al. Neoplastic progression of human colorectal cancer is associated with overexpression of the stromelysin-3 and BM-40/SPARC genes. Int. J. Cancer 64, 70–75 (1995).

    Article  CAS  Google Scholar 

  12. Ledda, F. et al. The expression of the secreted protein acidic and rich in cysteine, SPARC, is associated with the neoplastic progression of human melanoma. J. Invest. Dermatol. (in the press).

  13. Podhajcer, O.L. et al. Expression of cathepsin D in primary and metastatic human melanoma and dysplastic nevi. J. Invest. Dermatol. 104, 340–144 (1995).

    Article  CAS  Google Scholar 

  14. Terranova, V.P., Williams, J.E., Liotta, L.E. & Martin, G.R. Modulation of the metastatic activity of melanoma Cells by laminin and fibronectin. Science 226, 982–985 (1984).

    Article  CAS  Google Scholar 

  15. Kanemoto, T. et al. Identification of an amino acid sequence from the laminin A chain that stimulates metastasis and collagenase IV production. Proc. Natl. Acad. Sci. USA 87, 2279–2283 (1990).

    Article  CAS  Google Scholar 

  16. Seftor, R.E.B. et al. Role of the αvβ3 integrin in human melanoma Cell invasion. Proc. Natl. Acad. Sci. USA 89, 1557–1561 (1992).

    Article  CAS  Google Scholar 

  17. Seftor, R.E.B., Seftor, E., Stetler-Stevenson, W.G. & Hendrix, M.J.C. The 72 kDa type IV collagenase is modulated via differential expression of αvβ3 and α5β1 integrins during human melanoma invasion. Cancer Res. 53, 3411–3415 (1993).

    CAS  Google Scholar 

  18. Sage, E.H., Vemon, R.B., Funk, S.E., Everitt, E.A. & Angello, J. SPARC, a secreted protein associated with Cellular proliferation, inhibits Cell spreading in vitro and exhibits Ca2+-dependent binding to the extraCellular matrix. J. Cell Biol. 109, 341–356 (1989).

    Article  CAS  Google Scholar 

  19. Lane, T.F., Iruela-Arispe, M. & Sage, E.H. Regulation of gene expression by SPARC during angiogenesis in vitro. Changes in fibronectin, thrombospondin-1 and plasminogen activator inhibitor-1. J. Biol. Chem. 267, 16736–16745 (1992).

    CAS  PubMed  Google Scholar 

  20. Kamihagi, K., Katayama, M., Ouchi, R. & Kato, I. Osteonectin/SPARC regulates extraCellular secretion rates of fibronectin and laminin extra Cellular matrix proteins. Biochem. Biophys. Res. Common. 200, 423–428 (1994).

    Article  CAS  Google Scholar 

  21. Maurer, P. et al. High-affinity and low-affinity calcium binding and stability of the multidomain extraCellular 30-kDa basement membrane glycoprotein (BM-40/SPARC/osteonectin). Eur. J. Biochem. 205, 233–240 (1992).

    Article  CAS  Google Scholar 

  22. Lane, T.F. & Sage, E.H. Functional mapping of SPARC: Peptides from two distinct sites modulate Cell adhesion. J. Cell Biol. 111, 3065–3076 (1990).

    Article  CAS  Google Scholar 

  23. Pottgiesser, J. et al. Changes in calcium and collagen II binding caused by mutations in the EF hand and other domains of extraCellular matrix protein BM-40 (SPARC, osteonectin). J. Mol. Biol. 238, 563–574 (1994).

    Article  CAS  Google Scholar 

  24. Funk, S.E., Sage, E.H. Differential effects of SPARC and cationic SPARC peptides on DNA synthesis by endothelial Cells and fibroblasts. J. Cell Physiol. 154, 53–63 (1993).

    Article  CAS  Google Scholar 

  25. Lane, T.F., Iruela-Arispe, M.L., Johnson, R.S. & Sage, E.H. SPARC is a source of copper-binding peptides that stimulate angiogenesis. J. Cell Biol. 125, 929–943 (1994).

    Article  CAS  Google Scholar 

  26. Kochevar, G.J., Stanek, J.A. & Rucker, E.B. Truncated fibronectin. An autologous growth-promoting substance secreted by renal carcinoma Cells. Cancer 69, 2311–2315 (1992).

    Article  CAS  Google Scholar 

  27. Lambert Vidmar, S., Lottspeich, F., Emod, Y., Planchenault, T. & Kleil-Dlouha, V. Latent fibronectin-degrading serine proteinase activity in N-terminal heparin-binding domain of human plasma fibronectin. Eur. J Biochem. 201, 71–77 (1991).

    Article  CAS  Google Scholar 

  28. Mok, S.C., Chan, W.Y., Wong, K.K., Muto, M.G. & Berkowitz, R.S. SPARC, an extraCellular matrix protein with tumor-suppressing activity in human ovarian epithelial Cells. Oncogene 12, 1895–1901 (1996).

    CAS  PubMed  Google Scholar 

  29. Funk, S.E. & Sage, E.H., Ca2+-binding glycoprotein SPARC modulates Cell cycle progression in bovine aortic endothelial Cells. Proc. Natl Acad. Sci. USA 88, 2648–2652 (1991).

    Article  CAS  Google Scholar 

  30. Everitt, E.A. & Sage, E.H. Expression of SPARC is correlated with altered morphologies in transfected F9 embryonal carcinoma Cells. Exp. Cell Res. 199, 134–146 (1992).

    Article  CAS  Google Scholar 

  31. Oppenheim, J.J., Zachariae, C.O.C., Mukaida, N. & Matsushima, K. Properties of the novel proinflammatory supergene intercrineo cytokine family. Annu. Rev. Immunol. 9, 617–648 (1991).

    Article  CAS  Google Scholar 

  32. Gilat, D., Cahalon, L., Harshkovitz, R. & Lider, O. Interplay of T Cells and cytokines in the context of enzymatically modified extraCellular matrix. Immunol. Today, 17, 16–20 (1996).

    Article  CAS  Google Scholar 

  33. Mercola, D. & Cohen, J.S. Antisense approaches to cancer gene therapy. Cancer Gene Ther. 2, 47–59 (1995).

    CAS  PubMed  Google Scholar 

  34. Trojan, J. et al. Treatment and prevention of rat glioblastoma by immunogenic C6 Cells expressing antisense insulin-like growth factor I RNA. Science 259, 94–97 (1993).

    Article  CAS  Google Scholar 

  35. Laird, A.D., Brown, P.I. & Fausto, N. Inhibition of tumor growth in liver epithelial Cells transfected with a transforming growth factor α antisense gene. Cancer Res. 54, 4224–232 (1994).

    CAS  PubMed  Google Scholar 

  36. Aoki, K., Yoshida, T., Sugimura, T. & Terada, M. Liposome-mediated in vivo gene transfer of antisense K-ras construct inhibits pancreatic tumor dissemination in the murine peritoneal cavity. Cancer Res. 55, 3810–3816 (1995).

    CAS  PubMed  Google Scholar 

  37. Harlow, E. & Lane, D., Immunizationax. in: Antibodies: A Laboratory Manual. Ch. 5, 53–138 (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1988).

    Google Scholar 

  38. Rao, J.S. et al. Elevated levels of M, 92,000 type IV collagenase in human brain tumors. Cancer Res. 53, 2208–2211 (1993).

    CAS  PubMed  Google Scholar 

  39. Yabkowitz, R., Mansfield, P.J., Dixit, V.M. & Suchard, S.J. Motility of human carcinoma Cells in response to thrombospondin: Relationship to metastatic potential and thrombospondin structural domains. Cancer Res. 53, 378–387 (1993).

    CAS  PubMed  Google Scholar 

  40. Collier, I.E. et al. H-ras oncogene-transformed human bronchial epithelial Cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J. Biol. Chem. 263, 6579–6587 (1988).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ledda, M., Adris, S., Bravo, A. et al. Suppression of SPARC expression by antisense RNA abrogates the tumorigenicity of human melanoma cells. Nat Med 3, 171–176 (1997). https://doi.org/10.1038/nm0297-171

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0297-171

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing