Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR–ABL tyrosine kinase

Abstract

The chimeric BCR–ABL oncoprotein is the molecular hallmark of chronic myelogenous leukemia (CML). BCR–ABL contains nuclear import and export signals but it is localized only in the cytoplasm where it activates mitogenic and anti-apoptotic pathways. We have found that inhibition of the BCR–ABL tyrosine kinase, either by mutation or by the drug STI571, can stimulate its nuclear entry. By combining STI571 with leptomycin B (LMB) to block nuclear export, we trapped BCR–ABL in the nucleus and the nuclear BCR–ABL tyrosine kinase activates apoptosis. As a result, the combined treatment with STI571 and LMB causes the irreversible and complete killing of BCR–ABL transformed cells, whereas the effect of either drug alone is fully reversible. The combined treatment with STI571 and LMB also preferentially eliminates mouse bone marrow cells that express BCR–ABL. These results indicate that nuclear entrapment of BCR–ABL can be used as a therapeutic strategy to selectively kill chronic myelogenous leukemia cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nuclear entrapment of BCR–ABL.
Figure 2: STI571 stimulates nuclear accumulation of BCR–Abl–NES.
Figure 4: Irreversible killing of BCR–ABL-transformed cells.
Figure 3: Nuclear accumulation of BCR–ABL induces apoptosis in K562 cells.
Figure 5: Preferential killing of mouse bone marrow cells expressing BCR–ABL.

Similar content being viewed by others

References

  1. Faderl, S. et al. The biology of chronic myeloid leukemia. N. Engl. J. Med. 341, 164–172 (1999).

    Article  CAS  Google Scholar 

  2. Faderl, S., Talpaz, M., Estrov, Z. & Kantarjian, H.M. Chronic myelogenous leukemia: biology and therapy. Ann. Intern. Med. 131, 207–219 (1999).

    Article  CAS  Google Scholar 

  3. Warmuth, M., Danhauser-Riedl, S. & Hallek, M. Molecular pathogenesis of chronic myeloid leukemia: implications for new therapeutic strategies. Ann. Hematol. 78, 49–64 (1999).

    Article  CAS  Google Scholar 

  4. Daley, G.Q., Van Etten, R.A. & Baltimore, D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247, 824–830 (1990).

    Article  CAS  Google Scholar 

  5. Pear, W.S. et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 92, 3780–3792 (1998).

    CAS  PubMed  Google Scholar 

  6. Zhang, X. & Ren, R. Bcr-Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia. Blood 92, 3829–3840 (1998).

    CAS  PubMed  Google Scholar 

  7. Wang, J.Y.J. in Integrative signaling through Abl: a tyrosine kinase with nuclear and cytoplasmic functions, 303–324 (Humana Press, Totowa, New Jersey, 2000).

    Google Scholar 

  8. Daley, G.Q., Van Etten, R.A., Jackson, P.K., Bernards, A. & Baltimore, D. Nonmyristoylated Abl proteins transform a factor-dependent hematopoietic cell line. Mol. Cell. Biol. 12, 1864–1871 (1992).

    Article  CAS  Google Scholar 

  9. Renshaw, M.W., McWhirter, J.R. & Wang, J.Y. The human leukemia oncogene bcr-abl abrogates the anchorage requirement but not the growth factor requirement for proliferation. Mol. Cell. Biol. 15, 1286–1293. (1995).

    Article  CAS  Google Scholar 

  10. Skorski, T. et al. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J. 16, 6151–6161 (1997).

    Article  CAS  Google Scholar 

  11. Amarante-Mendes, G.P. et al. Bcr–Abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome C and activation of caspase-3. Blood 91, 1700–1705 (1998).

    CAS  PubMed  Google Scholar 

  12. McWhirter, J.R. & Wang, J.Y. An actin-binding function contributes to transformation by the Bcr–Abl oncoprotein of Philadelphia chromosome+ human leukemias. EMBO J. 12, 1533–1546 (1993).

    Article  CAS  Google Scholar 

  13. Wen, S.T., Jackson, P.K. & Van Etten, R.A. The cytostatic function of Abl is controlled by multiple nuclear localization signals and requires the p53 and Rb tumor suppressor gene products. EMBO J. 15, 1583–1595 (1996).

    Article  CAS  Google Scholar 

  14. Taagepera, S. et al. Nuclear-cytoplasmic shuttling of ABL tyrosine kinase. Proc. Natl. Acad. Sci. USA 95, 7457–7462 (1998).

    Article  CAS  Google Scholar 

  15. Fornerod, M., Ohno, M., Yoshida, M. & Mattaj, I.W. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90, 1051–1060 (1997).

    Article  CAS  Google Scholar 

  16. Fukuda, M. et al. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390, 308–311 (1997).

    Article  CAS  Google Scholar 

  17. Baskaran, R. et al. Ataxia telangiectasia mutant protein activates Abl tyrosine kinase in response to ionizing radiation. Nature 387, 516–519 (1997).

    Article  CAS  Google Scholar 

  18. Jost, C.A., Marin, M.C. & Kaelin, W.G., Jr. p73 is a simian [correction of human] p53-related protein that can induce apoptosis. Nature 389, 191–194 (1997); erratum: 399, 817 (1999).

    Article  CAS  Google Scholar 

  19. Gong, J.G. et al. The tyrosine kinase Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature. 399, 806–809 (1999).

    Article  CAS  Google Scholar 

  20. Wang, J.Y.J. Regulation of cell death by the Abl tyrosine kinase. Oncogene 20, 5643–5650 (2000).

    Article  Google Scholar 

  21. Buchdunger, E. et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res. 56, 100–104 (1996).

    CAS  PubMed  Google Scholar 

  22. Druker, B.J. et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nature Med. 2, 561–566 (1996).

    Article  CAS  Google Scholar 

  23. le Coutre, P. et al. In vivo eradication of human BCR/ABL-positive leukemia cells with an ABL kinase inhibitor. J. Natl. Cancer Inst. 91, 163–168 (1999).

    Article  CAS  Google Scholar 

  24. Deininger, M.W., Goldman, J.M., Lydon, N. & Melo, J.V. The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of Bcr-Abl-positive cells. Blood 90, 3691–3698 (1997).

    CAS  PubMed  Google Scholar 

  25. Beran, M. et al. Selective inhibition of cell proliferation and BCR-ABL phosphorylation in acute lymphoblastic leukemia cells expressing Mr 190,000 BCR-ABL protein by a tyrosine kinase inhibitor (CGP-57148). Clin. Cancer Res. 4, 1661–1672 (1998).

    CAS  PubMed  Google Scholar 

  26. McWhirter, J.R., Galasso, D.L. & Wang, J.Y. A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr–Abl oncoproteins. Mol. Cell. Biol. 13, 7587–7595 (1993).

    Article  CAS  Google Scholar 

  27. Schindler, T. et al. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289, 1938–1942 (2000).

    Article  CAS  Google Scholar 

  28. Klein, E. et al. Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia. Int. J. Cancer 18, 421–431 (1976).

    Article  CAS  Google Scholar 

  29. Klucher, K.M., Lopez, D.V. & Daley, G.Q. Secondary mutation maintains the transformed state in BaF3 cells with inducible BCR/ABL expression. Blood 91, 3927–3934 (1998).

    CAS  PubMed  Google Scholar 

  30. Kudo, N. et al. Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc. Natl. Acad. Sci. USA 96, 9112–9117 (1999).

    Article  CAS  Google Scholar 

  31. Li, S., Ilaria, R.L. Jr, Million, R.P., Daley, G.Q. & Van Etten, R.A. The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J. Exp. Med. 189, 1399–1412 (1999).

    Article  CAS  Google Scholar 

  32. Heinrich, M.C. et al. Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 96, 925–932 (2000).

    CAS  PubMed  Google Scholar 

  33. McGahon, A. et al. BCR-ABL maintains resistance of chronic myelogenous leukemia cells to apoptotic cell death. Blood 83, 1179–1187 (1994).

    CAS  PubMed  Google Scholar 

  34. Druker, B.J. & Lydon, N.B. Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. J. Clin. Invest. 105, 3–7 (2000).

    Article  CAS  Google Scholar 

  35. Goldman, J.M. Tyrosine-kinase inhibition in treatment of chronic myeloid leukaemia. Lancet 355, 1031–1032 (2000).

    Article  CAS  Google Scholar 

  36. Vastag, B. Leukemia drug heralds molecularly targeted era. J. Natl. Cancer Inst. 92, 6–8 (2000).

    Article  CAS  Google Scholar 

  37. le Coutre, P. et al. Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification. Blood 95, 1758–1766 (2000).

    CAS  PubMed  Google Scholar 

  38. Weisberg, E. & Griffin, J.D. Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines. Blood 95, 3498–3505 (2000).

    CAS  PubMed  Google Scholar 

  39. Mahon, F.X. et al. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood 96, 1070–1079 (2000).

    CAS  PubMed  Google Scholar 

  40. Gambacorti-Passerini, C. et al. Role of alpha1 Acid Glycoprotein in the In Vivo Resistance of Human BCR-ABL(+) Leukemic Cells to the Abl Inhibitor STI571. J. Natl. Cancer Inst. 92, 1641–1650 (2000).

    Article  CAS  Google Scholar 

  41. Newlands, E.S., Rustin, G.J. & Brampton, M.H. Phase I trial of elactocin. Br. J. Cancer 74, 648–649 (1996).

    Article  CAS  Google Scholar 

  42. McWhirter, J.R. & Wang, J.Y. Activation of tyrosinase kinase and microfilament-binding functions of Abl by bcr sequences in bcr/abl fusion proteins. Mol. Cell. Biol. 11, 1553–1565. (1991).

    Article  CAS  Google Scholar 

  43. Cortez, D., Kadlec, L. & Pendergast, A.M. Structural and signaling requirements for BCR-ABL-mediated transformation and inhibition of apoptosis. Mol. Cell. Biol. 15, 5531–5541 (1995).

    Article  CAS  Google Scholar 

  44. Pear, W.S., Nolan, G.P., Scott, M.L. & Baltimore, D. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90, 8392–8396 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Druker for providing STI571; M. Yoshida for his gift of LMB; G. Daley for the TonB cell line; R. Ren for the MSCV-BCR–ABL/p210-IRES-GFP construct; and J. Feramisco and B. Smith for their assistance with deconvolution microscopy. This work was supported by NIH grants CA 43054 and HL57900 to JYJW, and a fellowship from the Lopiccola Foundation to PV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Y. J. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vigneri, P., Wang, J. Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR–ABL tyrosine kinase. Nat Med 7, 228–234 (2001). https://doi.org/10.1038/84683

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84683

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing