Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Trends in microarray analysis

Microarrays permit the analysis of gene expression, DNA sequence variation, protein levels, tissues, cells and other biological and chemical molecules in a massively parallel format. Robust microarray manufacture, hybridization, detection and data analysis technologies permit novice users to adapt this exciting technology readily, and more experienced users to push the boundaries of discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression analysis by microarray.
Figure 2: Information workflow.
Figure 3: Protein microarray technology.
Figure 4: Genetic screening by microarray.

References

  1. Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).

    Article  CAS  Google Scholar 

  2. Schena, M. Genome analysis with gene expression microarrays. BioEssays 18, 427–431 (1996).

    Article  CAS  Google Scholar 

  3. Schena, M. et al. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc. Natl. Acad. Sci. USA 93, 10614–10619 (1996).

    Article  CAS  Google Scholar 

  4. Lockhart, D.J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnol. 13, 1675–1680 (1996).

    Article  Google Scholar 

  5. DeRisi, J. et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nature Genet. 14, 457–460 (1996).

    Article  CAS  Google Scholar 

  6. Grunstein, M. & Hogness, D.S. Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc. Natl. Acad. Sci. USA 72, 3961–3965 (1975).

    Article  CAS  Google Scholar 

  7. Southern, E.M. Blotting at 25. Trends Biochem. Sci. 25, 585–588 (2000).

    Article  CAS  Google Scholar 

  8. Jackson, D.A., Symons, R.H. & Berg, P. Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc. Natl. Acad. Sci. USA 69, 2904–2409 (1972).

    Article  CAS  Google Scholar 

  9. Mullis, K.B. & Faloona, F.A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155, 335–350 (1987).

    Article  CAS  Google Scholar 

  10. Wodicka, L., Dong, H., Mittmann, M., Ho, M.H. & Lockhart, D.J. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nature Biotechnol. 15, 1359–1367 (1997).

    Article  CAS  Google Scholar 

  11. Cho, R.J. et al. Parallel analysis of genetic selections using whole genome oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 95, 3752–3757 (1998).

    Article  CAS  Google Scholar 

  12. Lashkari, D.A. et al. Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc. Natl. Acad. Sci. USA 94, 13057–13062 (1997).

    Article  CAS  Google Scholar 

  13. Yuen, T., Wurmbach, E., Pfeffer, R.L., Ebersole, B.J. & Sealfon, S.C. Accuracy and calibration of commercial oligonucleotide and custom cDNA microarrays. Nucleic Acids Res. 30, e48 (2002).

    Article  Google Scholar 

  14. Kane, M.D. et al. Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays. Nucleic Acids Res. 28, 4552–4557 (2000).

    Article  CAS  Google Scholar 

  15. Hughes, T.R. et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nature Biotechnol. 19, 342–347 (2001).

    Article  CAS  Google Scholar 

  16. Lesaicherre, M.L., Lue, R.Y., Chen, G.Y., Zhu, Q. & Yao, S.Q. Intein-mediated biotinylation of proteins and its application in a protein microarray. J. Am. Chem. Soc. 124, 8768–8769 (2002).

    Article  CAS  Google Scholar 

  17. Schena, M. et al. Microarrays: biotechnology's discovery platform for functional genomics. Trends Biotechnol. 16, 301–306 (1998).

    Article  CAS  Google Scholar 

  18. Fodor, S.P. et al. Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773 (1991).

    Article  CAS  Google Scholar 

  19. Singh-Gasson, S. et al. Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nature Biotechnol. 17, 974–978 (1999).

    Article  CAS  Google Scholar 

  20. Theriault, T.P., Winder, S.C. & Gamble, R.C. Application of ink-jet printing technology to the manufacture of molecular arrays. in DNA Microarrays: A Practical Approach 2nd edn. (ed. Schena, M.) 101–120 (Oxford University Press, Oxford, 2000).

    Google Scholar 

  21. Rose, D. Microfluidic technologies and instrumentation for printing DNA microarrays. in Microarray Biochip Technology 5th edn. (ed. Schena, M.) 19–38 (Eaton Publishing, Natick, MA, 2000).

    Google Scholar 

  22. Hegde, P. et al. A concise guide to cDNA microarray analysis. Biotechniques 29, 548–550 (2000).

    Article  CAS  Google Scholar 

  23. Stears, R.L., Getts, R.C. & Gullans, S.R. A novel, sensitive detection system for high-density microarrays using dendrimer technology. Physiol. Genomics 3, 93–99 (2000).

    Article  CAS  Google Scholar 

  24. Bellenson, J.L. Expression data and the bioinformatics challenges. in DNA Microarrays: A Practical Approach 2nd edn. (ed. Schena, M.) 139–165 (Oxford University Press, Oxford, 2000).

    Google Scholar 

  25. Carr, D.B., Somogyi, R. & Michaels, G. Templates for looking at gene expression clustering. Statistical Computing and Graphics Newsletter 8, 20–29 (1997).

    Google Scholar 

  26. Michaels, G.S. et al. Cluster analysis and data visualization of large-scale gene expression data. Pac. Symp. Biocomput., 42–53 (1998).

  27. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  Google Scholar 

  28. Evertsz, E., Gupta, R., Starink, P. & Watson, D. Technology and applications of gene expression microarrays. in Microarray Biochip Technology 5th edn. (ed. Schena, M.) 149–166 (Eaton Publishing, Natick, MA, 2000).

    Google Scholar 

  29. Zhou, Y-X, Kalocsai, P., Chen, J-Y. & Shams, S. Information processing issues and solutions associated with microarray technology. in Microarray Biochip Technology 5th edn. (ed. Schena, M.) 167–200 (Eaton Publishing, Natick, MA, 2000).

    Google Scholar 

  30. Shalon, D., Smith, S.J. & Brown, P.O. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res. 6, 639–645 (1996).

    Article  CAS  Google Scholar 

  31. Sniegowski, P. The genomics of adaptation in yeast. Curr. Biol. 9, R897–R898 (1999).

    Article  CAS  Google Scholar 

  32. Bjorkholm, B. et al. Comparison of genetic divergence and fitness between two subclones of Helicobacter pylori. Infect. Immun. 69, 7832–7838 (2001).

    Article  CAS  Google Scholar 

  33. MacBeath, G. & Schreiber, S.L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000).

    CAS  Google Scholar 

  34. Gao, X. et al. A flexible light-directed DNA chip synthesis gated by deprotection using solution photogenerated acids. Nucleic Acids Res. 29, 4744–4750 (2001).

    Article  CAS  Google Scholar 

  35. Wang, D., Liu, S., Trummer, B.J., Deng, C. & Wang, A. Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nature Biotechnol. 20, 275–281 (2002).

    Article  CAS  Google Scholar 

  36. Robinson, W.H. et al. Autoantigen microarrays for multiplex characterization of autoantibody responses. Nature Med. 8, 295–301 (2002).

    Article  CAS  Google Scholar 

  37. Chen, B., Parker, G. II, Han, J., Meyyappan, M. & Cassell, A.M. Heterogeneous single-walled carbon nanotube catalyst discovery and optimization. Chem. Mater. 14, 1891–1896 (2002).

    Article  CAS  Google Scholar 

  38. DeRisi, J.L., Iyer, V.R. & Brown, P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997).

    Article  CAS  Google Scholar 

  39. Hughes, T.R. et al. Widespread aneuploidy revealed by DNA microarray expression profiling. Nature Genet. 25, 333–337 (2000).

    Article  CAS  Google Scholar 

  40. Sudarsanam, P., Iyer, V.R., Brown, P.O. & Winston, F. Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 97, 3364–3369 (2000).

    Article  CAS  Google Scholar 

  41. Heller, R.A. et al. Discovery and analysis of inflammatory disease-related genes using cDNA microarrays. Proc. Natl. Acad. Sci. USA 94, 2150–2155 (1997).

    Article  CAS  Google Scholar 

  42. Xiong, M., Li, W., Zhao, J., Jin, L. & Boerwinkle, E. Feature (gene) selection in gene expression-based tumor classification. Mol. Genet. Metab. 73, 239–247 (2001).

    Article  CAS  Google Scholar 

  43. Selaru, F.M. et al. Artificial neural networks distinguish among subtypes of neoplastic colorectal lesions. Gastroenterology 122, 606–613 (2002).

    Article  Google Scholar 

  44. MacBeath, G. & Schreiber, S.L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000).

    CAS  Google Scholar 

  45. Zhu, H. et al. Global analysis of protein activities using proteome chips. Science 293, 2101–2105 (2001).

    Article  CAS  Google Scholar 

  46. Haab, B.B., Dunham, M.J. & Brown, P.O. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2, 1–13 (2001).

    Article  Google Scholar 

  47. Wilson, D.S. & Nock, S. Functional protein microarrays. Curr. Opin. Chem. Biol. 6, 81–85 (2002).

    Article  CAS  Google Scholar 

  48. Eickhoff, H. et al. Protein array technology: the tool to bridge genomics and proteomics. Adv. Biochem. Eng. Biotechnol. 77, 103–112 (2002).

    CAS  PubMed  Google Scholar 

  49. Yguerabide, J. & Yguerabide, E.E. Resonance light scattering particles as ultrasensitive labels for detection of analytes in a wide range of applications. J. Cell Biochem. Suppl. 37, 71–81 (2001).

    Article  Google Scholar 

  50. Bao, P. et al. High-sensitivity detection of DNA hybridization on microarrays using resonance light scattering. Anal. Chem. 74, 1792–1797 (2002).

    Article  CAS  Google Scholar 

  51. Taton, T.A., Mirkin, C.A. & Letsinger, R.L. Scanometric DNA array detection with nanoparticle probes. Science 289, 1757–1760 (2000).

    Article  CAS  Google Scholar 

  52. Hong, T.M. et al. Profiling the downstream genes of tumor suppressor PTEN in lung cancer cells by complementary DNA microarray. Am. J. Respir. Cell Mol. Biol. 23, 355–363, 2000.

    Article  CAS  Google Scholar 

  53. Cao, Y.C., Jin, R. & Mirkin, C.A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536–1540 (2002).

    Article  CAS  Google Scholar 

  54. Lau, W.K., Chiu, S.K., Ma, J.T. & Tzeng, C.M. Linear amplification of catalyzed reporter deposition technology on nylon membrane microarray. Biotechniques 33, 566–570 (2002).

    Article  Google Scholar 

  55. Hacia, J.G. et al. Determination of ancestral alleles for human single-nucleotide polymorphisms using high-density oligonucleotide arrays. Nature Genet. 22, 164–167 (1999).

    Article  CAS  Google Scholar 

  56. Syvanen, A.C. From gels to chips: 'minisequencing' primer extension for analysis of point mutations and single nucleotide polymorphisms. Hum. Mutat. 13, 1–10 (1999).

    Article  CAS  Google Scholar 

  57. Tõnisson, N., Kurg, A., Lõhmussaar, E. & Metspalu, A. Arrayed primer extension on the DNA chip—method and applications. in Microarray Biochip Technology 5th edn. (ed. Schena, M.) 247–263 (Eaton Publishing, Natick, MA, 2000).

    Google Scholar 

  58. Schena, M. Genetic screening and diagnostics. in Microarray Analysis 1st edn. (ed. Schena, M.) 387–403 (Wiley-Liss, Hoboken, NJ, 2002).

    Google Scholar 

  59. Yue, H. et al. An evaluation of the performance of cDNA microarrays for detecting changes in global mRNA expression. Nucleic Acids Res. 29, E41 (2001).

    Article  CAS  Google Scholar 

  60. Chizhikov, V., Rasooly, A., Chumakov, K. & Levy, D.D. Microarray analysis of microbial virulence factors. Appl. Environ. Microbiol. 67, 3258–3263 (2001).

    Article  CAS  Google Scholar 

  61. Beaucage, S.L. Strategies in the preparation of DNA oligonucleotide arrays for diagnostic applications. Curr. Med. Chem. 8, 1213–1244 (2001).

    Article  CAS  Google Scholar 

  62. Paweletz, C.P. et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20, 1981–1989 (2001).

    Article  CAS  Google Scholar 

  63. Soini, H. & Musser, J.M. Molecular diagnosis of mycobacteria. Clin. Chem. 47, 809–814 (2001).

    CAS  PubMed  Google Scholar 

  64. Al-Khaldi, S.F., Martin, S.A., Rasooly, A. & Evans, J.D. DNA microarray technology used for studying foodborne pathogens and microbial habitats: minireview. J. AOAC Int. 85, 906–910 (2002).

    CAS  PubMed  Google Scholar 

  65. Kipps, T.J. Advances in classification and therapy of indolent B-cell malignancies. Semin. Oncol. 29, 98–104 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Schena.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stears, R., Martinsky, T. & Schena, M. Trends in microarray analysis. Nat Med 9, 140–145 (2003). https://doi.org/10.1038/nm0103-140

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0103-140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing