Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impaired prostate tumorigenesis in Egr1-deficient mice

Abstract

The transcription factor, early growth response protein 1 (EGR1), is overexpressed in a majority of human prostate cancers and is implicated in the regulation of several genes important for prostate tumor progression. Here we have assessed the effect of Egr1 deficiency on tumor development in two transgenic mouse models of prostate cancer (CR2-T-Ag and TRAMP). Using a combination of high-resolution magnetic resonance imaging and histopathological and survival analyses, we show that tumor progression was significantly impaired in Egr1−/− mice. Tumor initiation and tumor growth rate were not affected by the lack of Egr1; however, Egr1 deficiency significantly delayed the progression from prostatic intra-epithelial neoplasia to invasive carcinoma. These results indicate a unique role for Egr1 in regulating the transition from localized, carcinoma in situ to invasive carcinoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Egr1 overexpression and loss of Nab2 expression in prostate tumors from CR2-T-Ag transgenic mice.
Figure 2: Kaplan-Meier survival analysis of Egr1-deficient CR2-T-Ag mice.
Figure 3: MRI analysis of tumor incidence and growth rate in transgenic mice.
Figure 4: Analysis of tumor initiation in transgenic mice.
Figure 5: Altered patterns of gene expression in CR2-T-Ag/Egr1−/− tumors.
Figure 6: Nab2 represses Egr1-mediated gene activation in prostate carcinoma cells.
Figure 7: Lack of Egr1 impairs tumorigenesis in the TRAMP model of prostate cancer.

Similar content being viewed by others

References

  1. Nagle, R.B., Petein, M., Brawer, M., Bowden, G.T. & Cress, A.E. New relationships between prostatic intra-epithelial neoplasia and prostatic carcinoma. J. Cell. Biochem. Suppl. 26–29 (1992).

  2. Thigpen, A.E. et al. Increased expression of early growth response-1 messenger ribonucleic acid in prostatic adenocarcinoma. J. Urol. 155, 975–981 (1996).

    Article  CAS  Google Scholar 

  3. Eid, M.A., Kumar, M.V., Iczkowski, K.A., Bostwick, D.G. & Tindall, D.J. Expression of early growth response genes in human prostate cancer. Cancer Res. 58, 2461–2468 (1998).

    CAS  PubMed  Google Scholar 

  4. Gashler, A. & Sukhatme, V.P. Early growth response protein 1 (Egr-1): prototype of a zinc-finger family of transcription factors. Prog. Nucl. Acid Res. Mol. Biol. 50, 191–224 (1995).

    Article  CAS  Google Scholar 

  5. Khachigian, L.M., Lindner, V., Williams, A.J. & Collins, T. Egr-1-induced endothelial gene expression: a common theme in vascular injury. Science 271, 1427–1431 (1996).

    Article  CAS  Google Scholar 

  6. Qu, Z. et al. The transcriptional corepressor NAB2 inhibits NGF-induced differentiation of PC12 cells. J. Cell. Biol. 142, 1075–1082 (1998).

    Article  CAS  Google Scholar 

  7. Silverman, E.S. & Collins, T. Pathways of Egr-1-mediated gene transcription in vascular biology [comment]. Am. J. Pathol. 154, 665–670 (1999).

    Article  CAS  Google Scholar 

  8. Lee, S.L. et al. Luteinizing hormone deficiency and female infertility in mice lacking the transcription factor NGFI-A (Egr-1). Science 273, 1219–1222 (1996).

    Article  CAS  Google Scholar 

  9. Russo, M.W., Sevetson, B.R. & Milbrandt, J. Identification of NAB1, a repressor of NGFI-A and Krox20 mediated transcription. Proc. Natl. Acad. Sci. USA 92, 6873–6877 (1995).

    Article  CAS  Google Scholar 

  10. Svaren, J. et al. NAB2, a Corepressor of NGFI-A (Egr-1) and Krox20, is induced by proliferative and differentiative stimuli. Mol. Cell. Biol. 16, 3545–3553 (1996).

    Article  CAS  Google Scholar 

  11. Miano, J.M. & Berk, B.C. NAB2: a transcriptional brake for activated gene expression in the vessel wall? [comment]. Am. J. Pathol. 155, 1009–1012 (1999).

    Article  CAS  Google Scholar 

  12. Svaren, J. et al. EGR1 Target genes in prostate carcinoma cells identified by microarray analysis. J. Biol. Chem. In Press.

  13. Garabedian, E.M., Humphrey, P.A. & Gordon, J.I. A transgenic mouse model of metastatic prostate cancer originating from neuro-endocrine cells. Proc. Natl. Acad. Sci. USA 95, 15382–15387 (1998).

    Article  CAS  Google Scholar 

  14. Greenberg, N.M. et al. Prostate cancer in a transgenic mouse. Proc. Natl. Acad. Sci. USA 92, 3439–3443 (1995).

    Article  CAS  Google Scholar 

  15. Skobe, M., Rockwell, P., Goldstein, N., Vosseler, S. & Fusenig, N.E. Halting angiogenesis suppresses carcinoma cell invasion. Nature Med. 3, 1222–1227 (1997).

    Article  CAS  Google Scholar 

  16. Hojo, M. et al. Cyclosporine induces cancer progression by a cell-autonomous mechanism [comments]. Nature 397, 530–534 (1999).

    Article  CAS  Google Scholar 

  17. Pedersen, P.H. et al. Heterogeneous response to the growth factors [EGF, PDGF (bb), TGF-α, bFGF, IL-2] on glioma spheroid growth, migration and invasion. Int. J. Cancer 56, 255–261 (1994).

    Article  CAS  Google Scholar 

  18. Klein, K.A. et al. Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice. Nature Med. 3, 402–408 (1997).

    Article  CAS  Google Scholar 

  19. Russo, M.W., Matheny, C. & Milbrandt, J. Transcriptional activity of the zinc finger protein NGFI-A is influenced by its interaction with a cellular factor. Mol. Cell. Biol. 13, 6858–6865 (1993).

    Article  CAS  Google Scholar 

  20. Barrack, E.R. TGF-β in prostate cancer: a growth inhibitor that can enhance tumorigenicity. Prostate 31, 61–70 (1997).

    Article  CAS  Google Scholar 

  21. Fudge, K., Wang, C.Y. & Stearns, M.E. Immunohistochemistry analysis of platelet-derived growth factor A and B chains and platelet-derived growth factor α- and β-receptor expression in benign prostatic hyperplasias and Gleason-graded human prostate adenocarcinomas. Mod. Pathol. 7, 549–554 (1994).

    CAS  PubMed  Google Scholar 

  22. Tourtellotte, W.G., Nagarajan, R., Bartke, A. & Milbrandt, J. Functional compensation by Egr4 in Egr1-dependent luteinizing hormone regulation and Leydig cell steroidogenesis. Mol. Cell. Biol. 20, 5261–5268 (2000).

    Article  CAS  Google Scholar 

  23. Ivanovic, V., Melman, A., Davis-Joseph, B., Valcic, M. & Geliebter, J. Elevated plasma levels of TGF-beta 1 in patients with invasive prostate cancer [letter]. Nature Med. 1, 282–284 (1995).

    Article  CAS  Google Scholar 

  24. Steiner, M.S. & Barrack, E.R. Transforming growth factor-beta 1 overproduction in prostate cancer: effects on growth in vivo and in vitro. Mol. Endocrinol. 6, 15–25 (1992).

    CAS  PubMed  Google Scholar 

  25. Cui, W. et al. TGF-β1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86, 531–542 (1996).

    Article  CAS  Google Scholar 

  26. Liotta, L.A., Steeg, P.S. & Stetler-Stevenson, W.G. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64, 327–336 (1991).

    Article  CAS  Google Scholar 

  27. Dvorak, H.F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).

    Article  CAS  Google Scholar 

  28. Santiago, F.S. et al. New DNA enzyme targeting Egr-1 mRNA inhibits vascular smooth muscle proliferation and regrowth after injury. Nature Med. 5, 1438 (1999).

    Article  CAS  Google Scholar 

  29. Riggs, P.K., Rho, O. & DiGiovanni, J. Alteration of Egr-1 mRNA during multistage carcinogenesis in mouse skin. Mol. Carcinog. 27, 247–251 (2000).

    Article  CAS  Google Scholar 

  30. Scharnhorst, V. et al. EGR-1 enhances tumor growth and modulates the effect of the Wilms tumor 1 gene products on tumorigenicity. Oncogene 19, 791–800 (2000).

    Article  CAS  Google Scholar 

  31. Garabedian, E.M., Roberts, L.J., McNevin, M.S. & Gordon, J.I. Examining the role of Paneth cells in the small intestine by lineage ablation in transgenic mice. J. Biol. Chem. 272, 23729–23740 (1997).

    Article  CAS  Google Scholar 

  32. Day, M.L., Fahrner, T.J., Ayken, S. & Milbrandt, J. The zinc finger protein NGFI-A exists in both nuclear and cytoplasmic forms in nerve growth factor-stimulated PC12 Cells. J. Biol. Chem. 265, 15253–15260 (1990).

    CAS  PubMed  Google Scholar 

  33. Kirsch, K.H., Korradi, Y. & Johnson, J.P. Mader: a novel nuclear protein over expressed in human melanomas. Oncogene 12, 963–971 (1996).

    CAS  PubMed  Google Scholar 

  34. McNeal, J.E. & Bostwick, D.G. Intraductal dysplasia: a premalignant lesion of the prostate. Hum. Pathol. 17, 64–71 (1986).

    Article  CAS  Google Scholar 

  35. Lee, S.L., Wang, Y. & Milbrandt, J. Unimpaired macrophage differentiation and activation in mice lacking the zinc finger transplantation factor NGFI-A (EGR1). Mol. Cell. Biol. 16, 4566–4572 (1996).

    Article  CAS  Google Scholar 

  36. Morrison, T.B., Weis, J.J. & Wittwer, C.T. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques 24, 954–962 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Greenberg for TRAMP mice and G. Gavrilina , T. Gorodinsky, S. Audrain and C. Bollinger for technical assistance. This work was supported by NIH grants 5 P01 CA49712-08 (J.M.), R24 CA83060 (J.J.A.H.)and by grants from The Association for the Cure of Cancer of the Prostate (J.M.). S.A.A. was supported by NIH grants 5 T32CA09547-13 and 1KO8CA8790101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Milbrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdulkadir, S., Qu, Z., Garabedian, E. et al. Impaired prostate tumorigenesis in Egr1-deficient mice. Nat Med 7, 101–107 (2001). https://doi.org/10.1038/83231

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83231

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing