Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

PR39, a peptide regulator of angiogenesis

An Erratum to this article was published on 01 March 2000

Abstract

Although tissue injury and inflammation are considered essential for the induction of angiogenesis, the molecular controls of this cascade are mostly unknown. Here we show that a macrophage-derived peptide, PR39, inhibited the ubiquitin–proteasome-dependent degradation of hypoxia-inducible factor-1α protein, resulting in accelerated formation of vascular structures in vitro and increased myocardial vasculature in mice. For the latter, coronary flow studies demonstrated that PR39-induced angiogenesis resulted in the production of functional blood vessels. These findings show that PR39 and related compounds can be used as potent inductors of angiogenesis, and that selective inhibition of hypoxia-inducible factor-1α degradation may underlie the mechanism of inflammation-induced angiogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Matrigel assays.
Figure 2: PR39 induces HIF-1αand HIF-1α-dependent gene expression.
Figure 3: Angiogenesis in αMHC–PR39 mice.
Figure 4: PR39 induction of angiogenesis in lacZ transgenic mice.
Figure 5: Physiologic evaluation of PR39-induced angiogenesis
Figure 6: Effect of PR39 administration in the setting of acute myocardial ischemia.

References

  1. Ware, J.A. & Simons, M. Angiogenesis in ischemic heart disease . Nature Med. 3, 158–164 (1997).

    Article  CAS  Google Scholar 

  2. Arras, M. et al. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J. Clin. Invest. 101, 40–50 (1998).

    Article  CAS  Google Scholar 

  3. Arras, M. et al. Tumor necrosis factor-alpha is expressed by monocytes/macrophages following cardiac microembolization and is antagonized by cyclosporine. Basic Res. Card. 93, 97–107 (1998).

    Article  CAS  Google Scholar 

  4. Gordon, S., Clarke, S., Greaves, D. & Doyle, A. Molecular immunobiology of macrophages: recent progress. Curr. Opin. Immunol. 7, 24–33 (1995).

    Article  CAS  Google Scholar 

  5. Sunderkotter, C., Goebeler, M., Schulze-Osthoff, K., Bhardwaj, R. & Sorg, C. Macrophage-derived angiogenesis factors . Pharm. Ther. 51, 195– 216 (1991).

    Article  CAS  Google Scholar 

  6. Agerberth, B. et al. Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides . Eur. J. Biochem. 202, 849– 54 (1991).

    Article  CAS  Google Scholar 

  7. Gallo, R.L. et al. Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. Proc. Natl. Acad. Sci. USA 91, 11035–11039 (1994).

    Article  CAS  Google Scholar 

  8. Li, J., Brown, L.F., Laham, R.J., Volk, R. & Simons, M. Macrophage-dependent regulation of syndecan gene expression . Circ. Res. 81, 785–796 (1997).

    Article  CAS  Google Scholar 

  9. Gudmundsson, G.H. et al. Structure of the gene for porcine peptide antibiotic PR-39, a cathelin gene family member: comparative mapping of the locus for the human peptide antibiotic FALL-39. Proc. Natl. Acad. Sci. USA 92, 7085–7089 (1995).

    Article  CAS  Google Scholar 

  10. Chan, Y.R. & Gallo, R.L. PR-39, a syndecan-inducing antimicrobial peptide, binds and affects p130Cas. J. Biol. Chem. 273, 28978–28985 ( 1998).

    Article  CAS  Google Scholar 

  11. Shi, J., Ross, C.R., Leto, T.L. & Blecha, F. PR-39, a proline-rich antibacterial peptide that inhibits phagocyte NADPH oxidase activity by binding to Src homology 3 domains of p47phox. Proc. Natl. Acad. Sci. USA 93, 6014–6018 (1996).

    Article  CAS  Google Scholar 

  12. Carmeliet, P., et al. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394, 485 –490( 1998); erratum 395 , 525 (1998).

    Article  CAS  Google Scholar 

  13. Martin, C. et al. Cardiac hypertrophy in chronically anemic fetal sheep: Increased vascularization is associated with increased myocardial expression of vascular endothelial growth factor and hypoxia-inducible factor 1. Am. J. Obstet. Gynecol. 178, 527–534 (1998).

    Article  CAS  Google Scholar 

  14. Gerber, H.P., Condorelli, F., Park, J. & Ferrara, N. Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J. Biol. Chem. 272, 23659–23667 (1997).

    Article  CAS  Google Scholar 

  15. Salceda, S. & Caro, J. Hypoxia-inducible factor 1α (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J. Biol. Chem. 272, 22642–22647 (1997).

    Article  CAS  Google Scholar 

  16. Huang, L.E., Gu, J., Schau, M. & Bunn, H.F. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2- dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. USA 95, 7987–7992 (1998).

    Article  CAS  Google Scholar 

  17. Kallio, P.J., Wilson, W.J., O'Brien, S., Makino, Y. & Poellinger, L. Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway. J. Biol. Chem. 274, 6519–6525 (1999).

    Article  CAS  Google Scholar 

  18. Ng, W.A., Grupp, I.L., Subramaniam, A. & Robbins, J. Cardiac myosin heavy chain mRNA expression and myocardial function in the mouse heart. Circ. Res. 68, 1742– 1750 (1991).

    Article  CAS  Google Scholar 

  19. Aird, W.C., Jahroudi, N., Weiler-Guettler, H., Rayburn, H.B. & Rosenberg, R.D. Human von Willebrand factor gene sequences target expression to a subpopulation of endothelial cells in transgenic mice. Proc. Natl. Acad. Sci. USA 92, 4567–4571 (1995).

    Article  CAS  Google Scholar 

  20. Fenteany, G. & Schreiber, S.L. Lactacystin, proteasome function, and cell fate. J. Biol. Chem. 273, 8545– 8548 (1998).

    Article  CAS  Google Scholar 

  21. Lee, D.H. & Goldberg, A.L. Proteasome inhibitors cause induction of heat shock proteins and trehalose, which together confer thermotolerance in Saccharomyces cerevisiae. Mol. Cell. Biol. 18, 30–38 (1998).

    Article  CAS  Google Scholar 

  22. Bush, K.T., Goldberg, A.L. & Nigam, S.K. Proteasome inhibition leads to a heat-shock response, induction of endoplasmic reticulum chaperones, and thermotolerance. J. Biol. Chem. 272, 9086–9092 (1997).

    Article  CAS  Google Scholar 

  23. Meriin, A.B., Gabai, V.L., Yaglom, J., Shifrin, V.I. & Sherman, M.Y. Proteasome inhibitors activate stress kinases and induce Hsp72. Diverse effects on apoptosis. J. Biol. Chem. 273, 6373–6379 (1998).

    Article  CAS  Google Scholar 

  24. Shen, B.Q. et al. Homologous up-regulation of KDR/Flk-1 receptor expression by vascular endothelial growth factor in vitro. J. Biol. Chem. 273, 29979–29985 ( 1998).

    Article  CAS  Google Scholar 

  25. Kroll, J. & Waltenberger, J. VEGF-A induces expression of eNOS and iNOS in endothelial cells via VEGF receptor-2 (KDR). Biochem. Biophys. Res. Commun. 252, 743– 746 (1998).

    Article  CAS  Google Scholar 

  26. Bouloumie, A., Schini-Kerth, V.B. & Busse, R. Vascular endothelial growth factor up-regulates nitric oxide synthase expression in endothelial cells. Cardio. Res. 41, 773–780 (1999).

    Article  CAS  Google Scholar 

  27. Bein, K. et al. c-Myb function in fibroblasts. J. Cell. Phys. 173, 319–326 (1997).

    Article  CAS  Google Scholar 

  28. Hughes, S.E. Functional characterization of the spontaneously transformed human umbilical vein endothelial cell line ECV304: use in an in vitro model of angiogenesis . Exp. Cell. Res. 225, 171– 185 (1996).

    Article  CAS  Google Scholar 

  29. Dhanabal, M. et al. Endostatin: yeast production, mutants, and antitumor effect in renal cell carcinoma. Cancer Res. 59, 189–197 (1999).

    CAS  PubMed  Google Scholar 

  30. Passaniti, A. et al. A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab. Invest. 67, 519–528 (1992).

    CAS  PubMed  Google Scholar 

  31. Guillot, P.V. et al. A vascular bed-specific pathway. J. Clin. Invest. 103, 799–805 ( 1999).

    Article  CAS  Google Scholar 

  32. Li, J., Hampton, T., Morgan, J.P. & Simons, M. Stretch-induced VEGF expression in the heart. J. Clin. Invest. 100, 18–24 ( 1997).

    Article  CAS  Google Scholar 

  33. Maulik, N. et al. Nitric oxide signaling in ischemic heart. Cardio. Res. 30, 593–601 ( 1995).

    Article  CAS  Google Scholar 

  34. Sellke, F.W. et al. Angiogenesis induced by acidic fibroblast growth factor as an alternative method of revascularization for chronic myocardial ischemia . Surgery 120, 182–188 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Institutes of Health grants R01 HL53793 and P50 HL 56993 (M.S.), HL 46716 (F.W.S.), F32 HL10013 (R.V.), American Heart Association Established Investigator Award (M.S.) and by a grant from Chiron Corporation (M.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Simons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Post, M., Volk, R. et al. PR39, a peptide regulator of angiogenesis. Nat Med 6, 49–55 (2000). https://doi.org/10.1038/71527

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/71527

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing