Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transplantation of male germ line stem cells restores fertility in infertile mice

Abstract

Azoospermia or oligozoospermia due to disruption of spermatogenesis are common causes of human male infertility. We used the technique of spermatogonial transplantation in two infertile mouse strains, Steel (Sl) and dominant white spotting (W), to determine if stem cells from an infertile male were capable of generating spermatogenesis. Transplantation of germ cells from infertile Sl/Sld mutant male mice to infertile W/Wv or Wv/W54 mutant male mice restored fertility to the recipient mice. Thus, transplantation of spermatogonial stem cells from an infertile donor to a permissive testicular environment can restore fertility and result in progeny with the genetic makeup of the infertile donor male.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Steel factor (Kit ligand)–Kit receptor interaction in the mouse testis, with phenotypes and testis sizes of mice.
Figure 2: Microscopic appearance of seminiferous tubules of W/Wv recipient mouse testes after transplantation of Sl/ Sld germ cells.
Figure 3: Pedigree and Southern blot analysis of seven weanling mice from the mating of a white (open symbol) W/Wv recipient male mouse (number 1803) to a black (filled symbols) wild-type (+/+, C57BL/6) female mouse.

Similar content being viewed by others

References

  1. Greenberg, S.H., Lipshultz, L.I. & Wein, A.J. Experience with 425 subfertile male patients. J. Urol. 119, 507–510 ( 1978).

    Article  CAS  Google Scholar 

  2. Sigman, M., Lipshulz, L.I. & Howard, S.S. in Infertility in the Male 3rd ed. (eds. Lipshulz, L.I. & Howard, S.S.) 173–193 (Mosby, St. Louis, 1997).

    Google Scholar 

  3. Russell, L.D., Ettlin, R.A., SinhaHikim, A.P. & Clegg, E.D. in Histological and Histopathological Evaluation of the Testis 1–40 (Cache River, Clearwater, Florida 1990).

    Google Scholar 

  4. Silvers, W.K. in The Coat Colors of Mice 206–223 (Springer Verlag, New York, 1979).

    Book  Google Scholar 

  5. Brinster, R.L. & Zimmermann, J.W. Spermatogenesis following male germ-cell transplantation. Proc. Natl. Acad. Sci. USA 91, 11298–11302 (1994).

    Article  CAS  Google Scholar 

  6. Brinster, R.L. & Avarbock, M.R. Germline transmission of donor haplotype following spermatogonial transplantation. Proc. Natl. Acad. Sci. USA 91, 11303–11307 (1994).

    Article  CAS  Google Scholar 

  7. Ogawa, T., Aréchaga, J.M., Avarbock, M.R. & Brinster, R.L. Transplantation of testis germinal cells into mouse seminiferous tubules. Int. J. Dev. Biol. 41, 111–122 (1997).

    CAS  PubMed  Google Scholar 

  8. Chabot, B., Stephenson, D.A., Chapman, V.M., Besmer, P. & Bernstein, A. The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature 335, 88–89 (1988).

    Article  CAS  Google Scholar 

  9. Geissler, E.N., Ryan, M.A. & Housman, D.E. The dominat white spotting (W) locus of the mouse encodes the c-kit proto-oncogene. Cell 55, 185–192 (1988).

    Article  CAS  Google Scholar 

  10. Zsebo, K.M. et al. Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 63, 213–224 ( 1990).

    Article  CAS  Google Scholar 

  11. Huang, E. et al. The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell 63, 225–233, 1990.

    Article  CAS  Google Scholar 

  12. Nocka, K. et al. Expression of c-kit gene products in known cellular targets of W mutations in normal and W mutant mice – evidence for impaired c-kit kinase in mutant mice. Genes Dev. 3, 816–826 (1989).

    Article  CAS  Google Scholar 

  13. Ogawa, M. et al. Expression and function of c-kit in hemopoietic progenitor cells. J. Exp. Med. 174, 63– 71 (1991).

    Article  CAS  Google Scholar 

  14. Sorrentino, V., Giorgi, M., Geremia, R., Besmer, P. & Rossi, P. Expression of the c-kit proto-oncogene in the murine male germ cells. Oncogene 6, 149– 151 (1991).

    CAS  PubMed  Google Scholar 

  15. Matsui, Y., Zsebo, K.M. & Hogan, B.L.M. Embryonic expression of a haematopoietic growth factor encoded by the Sl locus and the ligand for c-kit. Nature 347, 667–669 ( 1990).

    Article  CAS  Google Scholar 

  16. Russell, E.S. Hereditary anemias of the mouse: A review for geneticists. Adv. Genet. 20, 357–459 ( 1979).

    Article  CAS  Google Scholar 

  17. Russell, E.S., Bernstein, S.E., Lawson, F.A. & Smith, L.J. Long-continued function of normal blood-forming tissue transplanted into genetically anemic hosts. J. Natl. Cancer Inst. 23, 557–566 (1959).

    CAS  PubMed  Google Scholar 

  18. McCulloch, E.A., Siminovich, E.A. & Till, J.L. Spleen-colony formation in anemic mice of genotype W/Wv. Science 144, 844–846 (1964).

    Article  CAS  Google Scholar 

  19. Bernstein, S.E. Tissue transplantation as an analytic and therapeutic tool in hereditary anemias . Am. J. Surg. 119, 448– 451 (1970).

    Article  CAS  Google Scholar 

  20. Mayer, T.C. & Green, M.C. An experimental analysis of the pigment defect caused by mutations at the W and Sl loci in mice. Dev. Biol. 18, 62–75 ( 1968).

    Article  CAS  Google Scholar 

  21. Huszar, D., Sharpe, A. & Jaenisch, R. Migration and proliferation of cultured neural crest cells in W mutant neural crest chimeras. Development 112, 131–141 (1991).

    CAS  PubMed  Google Scholar 

  22. Manova, K. et al. The expression pattern of the c-kit ligand in gonads of mice supports a role for the c-kit receptor in oocyte growth and in proliferation of spermatogonia. Dev. Biol. 157, 85– 99 (1993).

    Article  CAS  Google Scholar 

  23. Dolci, S. et al. Primordial germ cell survival in culture requires membrane bound mast cell growth factor. Nature 352, 809 –811 (1991).

    Article  CAS  Google Scholar 

  24. Yoshinaga, K. et al. Role of c-kit in mouse spermatogenesis: identification of spermatogonia as a specific site of c-kit expression and function . Development 113, 689– 699 (1991).

    CAS  PubMed  Google Scholar 

  25. Nakayama, H. et al. Effect of the steel locus on mouse spermatogenesis. Development 402, 117–126 (1988).

    Google Scholar 

  26. Flanagan, J.G., Chan, D. & Leder, P. Transmembrane form of the c-kit ligand growth factor is determined by alternative splicing and is missing in the Sld mutation. Cell 64, 1025–1035 ( 1991).

    Article  CAS  Google Scholar 

  27. Ogawa, T., Dobrinski, I., Avarbock, M.R. & Brinster, R.L. Leuprolide, a gonadotropin-releasing hormone agonist, enhances colonization after spermatogonial transplantation into mouse testes. Tissue Cell 30, 583–588 ( 1998).

    Article  CAS  Google Scholar 

  28. Russell, L.D., Franca, L.R. & Brinster, R.L. Ultrastructural observations of spermatogenesis in mice resulting from transplantation of mouse spermatogonia. J. Androl. 17, 603–614 ( 1996).

    CAS  PubMed  Google Scholar 

  29. Bellvé, A. R. Purification, culture, and fractionation of spermatogenic cells. Meth. Enzymol. 225, 84–113 (1993).

    Article  Google Scholar 

  30. McCoshen, J.A. & McCallion, D.J. A study of the primordial germ cells during their migratory phase in Steel mutant mice . Experientia 31, 589–590 (1975).

    Article  CAS  Google Scholar 

  31. Dobrinski, I., Ogawa, T., Avarbock, M.R. & Brinster, R.L. Computer assisted image analysis to assess colonization of recipient seminiferous tubules by spermatogonial stem cells from transgenic donor mice. Mol. Reprod. Dev. 53, 142–148 (1999a).

    Article  CAS  Google Scholar 

  32. Shinohara, T., Avarbock, M.R. & Brinster, R.L. β1- and α6-intergin are surface markers on mouse spermatogonial stem cells. Proc. Natl. Acad. Sci. USA 96, 5504–5509 (1999).

    Article  CAS  Google Scholar 

  33. Fleischman, R.A., Saltman, D.L., Stastny, V. & Zneimer, S., Deletion of the c-kit protoconcogene in the human developmental defect piebald trait. Proc. Nat. Acad. Sci. USA 88, 10885–10889 (1991).

    Article  CAS  Google Scholar 

  34. Silber, S.J. What forms of male infertility are there left to cure? Hum. Reprod . 10, 503–504 ( 1995).

    Article  CAS  Google Scholar 

  35. Tesarik, J., Mendoza, C. & Testart, J. Viable embryos from injection of round spermatids into oocytes. N. Engl. J. Med. 333, 525 (1995).

    Article  CAS  Google Scholar 

  36. Martin-du Pan, R.C. & Campana, A. Physiopathology of spermatogenic arrest. Fertil. Steril. 60, 937–946 (1993).

    Article  CAS  Google Scholar 

  37. Clouthier, D.E., Avarbock, M.R., Maika, S.D., Hammer, R.E. & Brinster, R.L. Rat spermatogenesis in mouse testis. Nature 381, 418– 421 (1996).

    Article  CAS  Google Scholar 

  38. Jiang F.-X. & Short, R.V. Male germ cell transplantation in rats: Apparent synchronization of spermatogenesis between host and donor seminiferous epithelia. Int. J. Androl. 18, 326– 330 (1995).

    Article  CAS  Google Scholar 

  39. Ogawa, T., Dobrinski, I., Avarbock, M.R. & Brinster, R.L. Xenogeneic spermatogenesis following transplantation of hamster germ cells to mouse testes. Biol. Reprod. 60, 515– 521 (1999).

    Article  CAS  Google Scholar 

  40. Ogawa, T., Dobrinski, I. & Brinster, R.L. Recipient preparation is critical for spermatogonial transplantation in the rat. Tissue Cell 31, 461–530 (1999).

    Article  CAS  Google Scholar 

  41. Dobrinski, I., Avarbock, M.R. & Brinster, R.L. Transplantation of germ cells from rabbits and dogs into mouse testes. Biol. Reprod. 61, 1331 –1339 (1999).

    Article  CAS  Google Scholar 

  42. Schlatt, S. et al. Germ cell transfer into rat, bovine, monkey and human testes . Hum. Reprod. 14, 144– 150 (1999).

    Article  CAS  Google Scholar 

  43. Nagano, M., Avarbock, M.R., Leonida, E.B., Brinster, C.J. & Brinster, R.L. Culture of mouse spermatogonial stem cells. Tissue Cell 30, 389– 397 (1998).

    Article  CAS  Google Scholar 

  44. Dirami, G., Ravindranath, N., Pursel, V. & Dym, M. Effects of stem cell factor and granulocyte macrophage-colony stimulating factor on survival of porcine type A spermatogonia cultured in KSOM. Biol. Reprod. 61, 225–230 (1999).

    Article  CAS  Google Scholar 

  45. Avarbock, M.R., Brinster, C.J. & Brinster, R.L. Reconstitution of spermatogenesis from frozen spermatogonial stem cells. Nature Med. 2, 693– 696 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Nagano, K. Orwig and T. Shinohara for discussions and suggestions. We also thank O. Jacenko and M. Campbell for advice and assistance with DNA analysis, and J. Barker for the W54 mouse line. In addition, we thank C. Freeman and R. Naroznowski for assistance with animal maintenance and experimentation, and J. Hayden (registered biological photographer; Blue Bell, Pennsylvania., BioGraphics) for photography and Fig. 1 schematic. Supported by the National Institutes of Health (NICHD 36504), the US Department of Agriculture/National Research Institute Competitive Grants Program (99-35205-8620), the Commonwealth and General Assembly of Pennsylvania, and the Robert J. Kleberg, Jr. and Helen C. Kleberg Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogawa, T., Dobrinski, I., Avarbock, M. et al. Transplantation of male germ line stem cells restores fertility in infertile mice. Nat Med 6, 29–34 (2000). https://doi.org/10.1038/71496

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/71496

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing