Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transforming growth factor-β superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis

Abstract

Erythropoietin (EPO) stimulates proliferation of early-stage erythrocyte precursors and is widely used for the treatment of chronic anemia. However, several types of EPO-resistant anemia are characterized by defects in late-stage erythropoiesis1,2, which is EPO independent2,3. Here we investigated regulation of erythropoiesis using a ligand-trapping fusion protein (ACE-536) containing the extracellular domain of human activin receptor type IIB (ActRIIB) modified to reduce activin binding. ACE-536, or its mouse version RAP-536, produced rapid and robust increases in erythrocyte numbers in multiple species under basal conditions and reduced or prevented anemia in murine models. Unlike EPO, RAP-536 promoted maturation of late-stage erythroid precursors in vivo. Cotreatment with ACE-536 and EPO produced a synergistic erythropoietic response. ACE-536 bound growth differentiation factor-11 (GDF11) and potently inhibited GDF11-mediated Smad2/3 signaling. GDF11 inhibited erythroid maturation in mice in vivo and ex vivo. Expression of GDF11 and ActRIIB in erythroid precursors decreased progressively with maturation, suggesting an inhibitory role for GDF11 in late-stage erythroid differentiation. RAP-536 treatment also reduced Smad2/3 activation, anemia, erythroid hyperplasia and ineffective erythropoiesis in a mouse model of myelodysplastic syndromes (MDS). These findings implicate transforming growth factor-β (TGF-β) superfamily signaling in erythroid maturation and identify ACE-536 as a new potential treatment for anemia, including that caused by ineffective erythropoiesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ACE-536, a modified ActRIIB fusion protein, increases RBC numbers, hemoglobin concentrations and hematocrit values by promoting maturation of late-stage erythroblasts.
Figure 2: ACE-536 promotes maturation of erythroblasts independently of EPO and acts synergistically with EPO to increase RBC production.
Figure 3: GDF11-ActRIIB-Smad2/3 signaling in late-stage erythroid differentiation.
Figure 4: ACE-536 inhibits Smad2/3 activation, mitigates ineffective erythropoiesis and ameliorates anemia in a NUP98-HOXD13 mouse model of MDS at multiple stages of disease severity.

Similar content being viewed by others

References

  1. Bowen, D. What is ineffective erythropoiesis in myelodysplastic syndromes? Leuk. Lymphoma 18, 243–247 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Libani, I.V. et al. Decreased differentiation of erythroid cells exacerbates ineffective erythropoiesis in β-thalassemia. Blood 112, 875–885 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eshghi, S., Vogelezang, M.G., Hynes, R.O., Griffith, L.G. & Lodish, H.F. α4β1 integrin and erythropoietin mediate temporally distinct steps in erythropoiesis: integrins in red cell development. J. Cell Biol. 177, 871–880 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Smith, R.E. Jr. The clinical and economic burden of anemia. Am. J. Manag. Care 16 (suppl.), S59–S66 (2010).

    PubMed  Google Scholar 

  5. Hattangadi, S.M., Wong, P., Zhang, L., Flygare, J. & Lodish, H.F. From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood 118, 6258–6268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tanno, T. & Miller, J.L. Iron loading and overloading due to ineffective erythropoiesis. Adv. Hematol. 2010, 358283 (2010).

    PubMed  PubMed Central  Google Scholar 

  7. Ginzburg, Y. & Rivella, S. β-thalassemia: a model for elucidating the dynamic regulation of ineffective erythropoiesis and iron metabolism. Blood 118, 4321–4330 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cao, A., Moi, P. & Galanello, R. Recent advances in β-thalassemias. Pediatr. Rep. 3, e17 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Jabbour, E., Kantarjian, H.M., Koller, C. & Taher, A. Red blood cell transfusions and iron overload in the treatment of patients with myelodysplastic syndromes. Cancer 112, 1089–1095 (2008).

    Article  PubMed  Google Scholar 

  10. Rider, C.C. & Mulloy, B. Bone morphogenetic protein and growth differentiation factor cytokine families and their protein antagonists. Biochem. J. 429, 1–12 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Yu, J. et al. Importance of FSH-releasing protein and inhibin in erythrodifferentiation. Nature 330, 765–767 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Broxmeyer, H.E. et al. Selective and indirect modulation of human multipotential and erythroid hematopoietic progenitor cell proliferation by recombinant human activin and inhibin. Proc. Natl. Acad. Sci. USA 85, 9052–9056 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shiozaki, M., Kosaka, M. & Eto, Y. Activin A: a commitment factor in erythroid differentiation. Biochem. Biophys. Res. Commun. 242, 631–635 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Maguer-Satta, V. et al. Regulation of human erythropoiesis by activin A, BMP2, and BMP4, members of the TGFβ family. Exp. Cell Res. 282, 110–120 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Akel, S., Petrow-Sadowski, C., Laughlin, M.J. & Ruscetti, F.W. Neutralization of autocrine transforming growth factor-β in human cord blood CD34+CD38Lin cells promotes stem-cell-factor-mediated erythropoietin-independent early erythroid progenitor development and reduces terminal differentiation. Stem Cells 21, 557–567 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Söderberg, S.S., Karlsson, G. & Karlsson, S. Complex and context dependent regulation of hematopoiesis by TGF-β superfamily signaling. Ann. NY Acad. Sci. 1176, 55–69 (2009).

    Article  PubMed  CAS  Google Scholar 

  17. Shav-Tal, Y. & Zipori, D. The role of activin A in regulation of hemopoiesis. Stem Cells 20, 493–500 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Blank, U. & Karlsson, S. The role of Smad signaling in hematopoiesis and translational hematology. Leukemia 25, 1379–1388 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Shiozaki, M. et al. Evidence for the participation of endogenous activin A/erythroid differentiation factor in the regulation of erythropoiesis. Proc. Natl. Acad. Sci. USA 89, 1553–1556 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou, L. et al. Inhibition of the TGF-β receptor I kinase promotes hematopoiesis in MDS. Blood 112, 3434–3443 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cadena, S.M. et al. Administration of a soluble activin type IIB receptor promotes skeletal muscle growth independent of fiber type. J. Appl. Physiol. 109, 635–642 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Suragani, R.N. et al. Heme-regulated eIF2α kinase activated Atf4 signaling pathway in oxidative stress and erythropoiesis. Blood 119, 5276–5284 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Socolovsky, M. et al. Ineffective erythropoiesis in Stat5a−/−5b−/− mice due to decreased survival of early erythroblasts. Blood 98, 3261–3273 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Liu, Y. et al. Suppression of Fas-FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo. Blood 108, 123–133 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, K. et al. Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc. Natl. Acad. Sci. USA 106, 17413–17418 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Camaschella, C. BMP6 orchestrates iron metabolism. Nat. Genet. 41, 386–388 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. McPherron, A.C., Lawler, A.M. & Lee, S.J. Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nat. Genet. 22, 260–264 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Wu, H.H. et al. Autoregulation of neurogenesis by GDF11. Neuron 37, 197–207 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Kim, J. et al. GDF11 controls the timing of progenitor cell competence in developing retina. Science 308, 1927–1930 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Loffredo, F.S. et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 153, 828–839 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lin, Y.W., Slape, C., Zhang, Z. & Aplan, P.D. NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia. Blood 106, 287–295 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Paulson, R.F., Shi, L. & Wu, D.C. Stress erythropoiesis: new signals and new stress progenitor cells. Curr. Opin. Hematol. 18, 139–145 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Iancu-Rubin, C. et al. Stromal cell-mediated inhibition of erythropoiesis can be attenuated by Sotatercept (ACE-011), an activin receptor type II ligand trap. Exp. Hematol. 41, 155–166.e17 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Sherman, M.L. et al. Multiple-dose, safety, pharmacokinetic, and pharmacodynamic study of sotatercept (ActRIIA-IgG1), a novel erythropoietic agent, in healthy postmenopausal women. J. Clin. Pharmacol. 53, 1121–1130 (2013).

    CAS  PubMed  Google Scholar 

  35. Sako, D. et al. Characterization of the ligand binding functionality of the extracellular domain of activin receptor type IIb. J. Biol. Chem. 285, 21037–21048 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee, H.B. & Blaufox, M.D. Blood volume in the rat. J. Nucl. Med. 26, 72–76 (1985).

    CAS  PubMed  Google Scholar 

  37. Lau, A.L., Kumar, T.R., Nishimori, K., Bonadio, J. & Matzuk, M.M. Activin βC and βE genes are not essential for mouse liver growth, differentiation, and regeneration. Mol. Cell. Biol. 20, 6127–6137 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Menon, M.P. et al. Signals for stress erythropoiesis are integrated via an erythropoietin receptor-phosphotyrosine-343-Stat5 axis. J. Clin. Invest. 116, 683–694 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ignotz, R.A. & Honeyman, T. TGF-β signaling in A549 lung carcinoma cells: lipid second messengers. J. Cell. Biochem. 78, 588–594 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Scharpfenecker, M. et al. BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J. Cell Sci. 120, 964–972 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Townson, S.A. et al. Specificity and structure of a high affinity activin receptor-like kinase 1 (ALK1) signaling complex. J. Biol. Chem. 287, 27313–27325 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Roy, C.N. et al. Hepcidin antimicrobial peptide transgenic mice exhibit features of the anemia of inflammation. Blood 109, 4038–4044 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Koulnis, M. et al. Identification and analysis of mouse erythroid progenitors using the CD71/TER119 flow-cytometric assay. J. Vis. Exp. 54, –e2809 (2011).

    Google Scholar 

Download references

Acknowledgements

We thank J. Knopf for critical review and T. Ahern for editorial contributions. We acknowledge the Cell Biology, Protein Purification and Preclinical Pharmacology groups at Acceleron Pharma for their contributions in support of this work. We also thank G. Paradis and A. Parmelee for their assistance with flow cytometry. NUP98-HOXD13 MDS mice and age-matched FVB wild-type mice were obtained from P. Aplan's laboratory at the US National Institutes of Health. Inhbctm1Zuk and Inhbctm2Zuk mice were obtained from M. Matzuk, Baylor College of Medicine.

Author information

Authors and Affiliations

Authors

Contributions

R.N.V.S.S., S.M. Cadena, S.M. Cawley, J.D.Q., R.C., R.S.P., J.S. and R.K. planned and designed the experiments. R.N.V.S.S., S.M. Cadena, S.M. Cawley, D.S. and R.L. conducted the experiments. R.N.V.S.S., S.M. Cadena, S.M. Cawley, D.S., D.M., R.L., M.V.D., M.D., K.S.L., K.W.U. and A.V.G. collected and interpreted data. R.N.V.S.S. and M.J.A. drafted and revised the manuscript.

Corresponding author

Correspondence to Ravindra Kumar.

Ethics declarations

Competing interests

R.N.V.S.S., S.M. Cadena, S.M. Cawley, D.S., D.M., R.L., M.V.D., M.J.A., K.S.L., K.W.U., A.V.G., J.D.Q., R.S.P., J.S. and R.K. are current or former employees of Acceleron Pharma with ownership interest in the company. R.C. is an employee of Celgene with ownership interest in the company.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 and Supplementary Tables 1–6 (PDF 22824 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suragani, R., Cadena, S., Cawley, S. et al. Transforming growth factor-β superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis. Nat Med 20, 408–414 (2014). https://doi.org/10.1038/nm.3512

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3512

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing