Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MID1, mutated in Opitz syndrome, encodes an ubiquitin ligase that targets phosphatase 2A for degradation

An Erratum to this article was published on 01 January 2002

Abstract

The gene MID1, the mutation of which causes X-linked Opitz G/BBB syndrome (OS, MIM 300000), encodes a microtubule-associated protein (MAP). We show that mutation of MID1 leads to a marked accumulation of the catalytic subunit of protein phosphatase 2A (PP2Ac), a central cellular regulator. PP2Ac accumulation is caused by an impairment of a newly identified E3 ubiquitin ligase activity of the MID1 protein that normally targets PP2Ac for degradation through binding to its α4 regulatory subunit in an embryonic fibroblast line derived from a fetus with OS. Elevated PP2Ac causes hypophosphorylation of MAPs, a pathological mechanism that is consistent with the OS phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Association of MID1 with polyubiquinated proteins.
Figure 2: Yeast two-hybrid analyses of MID1-a4 interactions.
Figure 3: The MID1–α4 interaction in COS-7 cells.
Figure 4: Regulation of PP2A by ubiquitin-mediated proteolysis in embryonic fibroblasts.
Figure 5: Dependence of PP2Ac quantity on MID1 expression.
Figure 6: Hypophosphorylation of microtubule-associated proteins in OS-derived embryonic fibroblasts.
Figure 7: Hypothetical model of the MID1-mediated ubiquitin-dependent regulation pathway of PP2A and its disruption in OS.

Similar content being viewed by others

References

  1. Robin, H.N., Opitz, J.M. & Muenke, M. Opitz G/BBB syndrome: clinical comparisons of families linked to Xp22 and 22q, a review of the literature. Am. J. Med. Genet. 62, 305–317 (1996).

    Article  CAS  Google Scholar 

  2. Robin, H.N. et al. Opitz syndrome is genetically heterogenous, with one locus on Xp22, and a second locus on 22q11.2. Nature Genet. 11, 459–461 (1995).

    Article  CAS  Google Scholar 

  3. Quaderi, N.A. et al. Opitz G/BBB syndrome, a defect of midline development, is due to mutations in a new RING finger gene on Xp22. Nature Genet. 17, 285–291 (1997).

    Article  CAS  Google Scholar 

  4. Schweiger, S. et al. The Opitz syndrome gene product, MID1, associates with microtubules. Proc. Natl Acad. Sci. USA 96, 2794–2799 (1999).

    Article  CAS  Google Scholar 

  5. Wu, L.C. et al. Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nature Genet. 14, 430–440 (1996).

    Article  CAS  Google Scholar 

  6. Borden, K.L.B., Lally, J.M., Martin, S.R., O'Reilly, N.J., Solomon, E. & Freemont, P.S. In vivo and in vitro characterization of the B1 and B2 zinc-binding domains from the acute promyelocytic leukemia protooncoprotein PML. Proc. Natl Acad. Sci. USA 93, 1601–1606 (1996).

    Article  CAS  Google Scholar 

  7. Dyck, J.A. et al. A novel macromolecular structure is a target of the promyelocyte–retinoic acid receptor oncoprotein. Cell 76, 333–243 (1994).

    Article  CAS  Google Scholar 

  8. Fang, S., Jensen, J.P., Ludwig, R.L., Vousden, K.H. & Weissman, A.M. Mdm2 is a RING finger–dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem. 275, 8945–8951 (2000).

    Article  CAS  Google Scholar 

  9. Fang, D., et al. Cbl-b, a RING-type E3 ubiquitin ligase, targets phosphatidylinositol 3-kinase for ubiquitination in T cells. J. Biol. Chem. 276, 4872–4878 (2001).

    Article  CAS  Google Scholar 

  10. Shimura, H. et al. Ubiquitination of a new form of α-synuclein by parkin from human brain: implications for Parkinson's disease. Science 293, 263–269 (2001).

    Article  CAS  Google Scholar 

  11. Tyers, M. & Jorgensen, P. Proteolysis and the cell cycle: with this RING I do thee destroy. Curr. Opin. Genet. Dev. 10, 54–64 (2000).

    Article  CAS  Google Scholar 

  12. Murata, K., Wu, J. & Brautigan, D.L. B cell receptor–associated protein α4 displays rapamycin sensitive binding directly to the catalytic subunit of protein phosphatase 2A. Proc. Natl Acad. Sci. 94, 10624–10629 (1997).

    Article  CAS  Google Scholar 

  13. Price, N.E., Wadzinski, B. & Mumby, M.C. An anchoring factor targets protein phosphatase 2A to brain microtubules. Mol. Brain Res. 73, 68–77 (1999).

    Article  CAS  Google Scholar 

  14. Dick, L.R. et al. Mechanistic studies on the inactivation of the proteasome by lactacystin. J. Biol. Chem. 271, 7273–7276 (1996).

    Article  CAS  Google Scholar 

  15. Chen, J., Peterson, R.T. & Schreiber, S.L. α4 associates with protein phosphatase 2A, 4, and 6. Biochem. Biophys. Res. Commun. 247, 827–832 (1998).

    Article  CAS  Google Scholar 

  16. Inui, S. et al. Molecular cloning of a cDNA clone encoding a phosphoprotein component related to the Ig receptor–mediated signal transduction. J. Immunol. 154, 2714–2723 (1995).

    CAS  PubMed  Google Scholar 

  17. Buchner, G. et al. MID2, a homologue of the Opitz syndrome gene MID1: similarities in subcellular localization and differences in expression during development. Hum. Mol. Genet. 8, 1397–1407 (1999).

    Article  CAS  Google Scholar 

  18. Reymond, A. et al. The tripartite motif family identifies cell compartments. EMBO J. 20, 2140–2151 (2001).

    Article  CAS  Google Scholar 

  19. Moynihan, T.P. et al. The ubiquitin-conjugating enzymes UbcH7 and UbcH8 interact with RING finger/IBR motif–containing domains of HHARI and H7-AP1. J. Biol. Chem. 274, 30963–30968 (1999).

    Article  CAS  Google Scholar 

  20. Cainarca, S., Messali, S., Ballabio, A. & Meroni, G. Functional characterization of the Opitz syndrome gene product (midin): evidence for homodimerization and association with microtubules throughout the cell cycle. Hum. Mol. Genet. 8, 1387–1396 (1999).

    Article  CAS  Google Scholar 

  21. Sontag, E., Nunbhakdi-Craig, V., Bloom, G.S. & Mumby, M.C. A novel pool of protein phosphatase 2A is associated with microtubules and is regulated during the cell cycle. J. Cell Biol. 128, 1131–1144 (1995).

    Article  CAS  Google Scholar 

  22. Baharians, Z. & Schönthal, A.H. Autoregulation of protein phosphatase type 2A expression. J. Biol. Chem. 273, 19019–19024 (1998).

    Article  CAS  Google Scholar 

  23. Zolnierowsicz, S. Type 2A protein phosphatase, the complex regulator of numerous signaling pathways. Biochem. Pharmacol. 60, 1225–1235 (2000).

    Article  Google Scholar 

  24. Wera, S. & Hemmings, B.A. Serine/threonine protein phosphatases. Biochem. J. 311, 17–29 (1995).

    Article  CAS  Google Scholar 

  25. Goldberg, Y. Protein phosphatase 2A: who shall regulate the regulator? Biochem. Pharmacol. 57, 321–328 (1999).

    Article  CAS  Google Scholar 

  26. Trojanowski, J.Q. & Lee, V.M.Y. Phosphorylation of paired helical filament tau in Alzheimer's disease neurofibrillary lesions: focusing on phosphatases. FASEB J. 9, 1570–1576 (1995).

    Article  CAS  Google Scholar 

  27. Baharians, Z. & Schönthal, A.H. Reduction of Ha-ras-induced cellular transformation by elevated expression of protein phosphatase type 2A. Mol. Carcinogenesis 24, 246–254 (1999).

    Article  CAS  Google Scholar 

  28. Kawabe, T., Muslin, A.J. & Korsmeyer, S.J. HOX11 interacts with protein phosphatases PP2A and PP1 and disrupts a G2/M cell-cycle checkpoint. Nature 385, 454–458 (1997).

    Article  CAS  Google Scholar 

  29. Hsu, W., Zeng, L. & Constantini, F. Identification of a domain of axin that binds to the serine/threonine protein phosphatase 2A and a self-binding domain. J. Biol. Chem. 274, 3439–3445 (1999).

    Article  CAS  Google Scholar 

  30. Uemura, T., Shiomi, K., Togashi, S. & Takeichi, M. Mutation of twins encoding a regulator of protein phosphatase 2A leads to pattern duplication in Drosophila imaginal disks. Genes. Dev. 7, 429–440 (1993).

    Article  CAS  Google Scholar 

  31. Deng, X., Takahiko, I., Carr., B., Mumby, W. & May, W.S. Reversible phosphorylation of bcl2 following interleukin 3 or bryostatin 1 is mediated by direct interaction with protein phosphatase 2A. J. Biol. Chem. 273, 34157–34163 (1998).

    Article  CAS  Google Scholar 

  32. Santoro, M.F. et al. Regulation of protein phosphatase 2A activity by caspase-3 during apoptosis. J. Biol. Chem. 273, 13119–13128 (1998).

    Article  CAS  Google Scholar 

  33. Maier, G.D. et al. Regulation of cytoskeletal organization in tumor cells by protein phosphatase-1 and -2A. Int. J. Cancer 61, 54–61 (1995).

    Article  CAS  Google Scholar 

  34. Ito, A. et al. Truncated isoform of the PP2A B56 subunit promotes cell motility through paxillin phosphorylation. EMBO J. 19, 562–571 (2000).

    Article  CAS  Google Scholar 

  35. Kobayashi, N. et al. Process formation of podocytes: morphogenetic activity of microtubules and regulation by protein serine/threonine phosphatase PP2A. Histochem. Cell Biol. 115, 255–266 (2001).

    CAS  PubMed  Google Scholar 

  36. Gong, C. et al. Regulation of phosphorylation of neuronal microtubule-associated proteins MAP1b and MAP2 by protein phosphatase-2A and -2B in rat brain. Brain Res. 853, 299–309 (2000).

    Article  CAS  Google Scholar 

  37. Avila, J., Dominguez, J. & Diaz, N.J. Regulation of microtubule dynamics by microtubule-associated protein expression and phosphorylation during neuronal development. Int. J. Dev. Biol. 38, 13–25 (1994).

    CAS  PubMed  Google Scholar 

  38. Sapir, T., Cahana, A., Seger, R., Nekhai, S. & Reiner, O. LIS1 is a microtubule-associated phosphoprotein. Eur. J. Biochem. 265, 181–188 (1999).

    Article  CAS  Google Scholar 

  39. Liu, J., Prickett, T.D., Elliott, E., Meroni, G. & Brautigan, D.L. Phosphorylation and microtubule association of the Opitz syndrome protein mid-1 is regulated by protein phosphatase 2A via binding to the regulatory subunit α4. Proc. Natl Acad. Sci. USA 98, 6650–6655 (2001).

    Article  CAS  Google Scholar 

  40. Jackson, P.K. et al. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol. 10, 429–439 (2000).

    Article  CAS  Google Scholar 

  41. Freemont, P.S. RING for destruction? Curr. Biol. 10, R84–R87 (2000).

    Article  CAS  Google Scholar 

  42. Joazeiro, C.A. & Weissman, A.M. RING finger proteins: mediators of ubiquitin ligase activity. Cell 102, 549–552 (2000).

    Article  CAS  Google Scholar 

  43. Nanahoshi, M. et al. Regulation of protein phosphatase 2A catalytic activity by α4 protein and its yeast homologue Tap42. Biochem. Biophys. Res. Commun. 251, 520–526 (1998).

    Article  CAS  Google Scholar 

  44. Briault, S. et al. A gene for FG syndrome maps in the Xq12–q21.31 region. Am. J. Med. Genet. 73, 87–90 (1997).

    Article  CAS  Google Scholar 

  45. Graham, J.M. et al. Report of three new families with linkage to Xq12– q22.1. Am. J. Med. Genet. 80, 145–156 (1998).

    Article  Google Scholar 

  46. Opitz, J.M. & Kaveggia, E.G. The FG syndrome: an X-linked recessive syndrome of multiple congenital anomalies and mental retardation. Z. Kinderheilk. 117, 1–18 (1974).

    Article  CAS  Google Scholar 

  47. Fields, S. & Sternglanz, R. The two-hybrid system: an assay for protein-protein interactions. Trends Genet. 10, 286–292 (1994).

    Article  CAS  Google Scholar 

  48. Klose, J. & Kobalz, U. Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 16, 1034–1059 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Madle and S. Freier for tissue culturing, V. Kalscheuer and B. Auer for their continuous support and helpful discussions, F. Fresser and G. Baier for their excellent support concerning the yeast two-hybrid methodology, K. Wrogemann for the correction of the manuscript and F. Erdogan for computer support. This work was supported by the Austrian National Bank Project 7961 (to R.S.) and by the Deutsche Forschungsgemeinschaft (DFG) Grant RO389/17-3 (to H.H.R.). This article is dedicated to M. Schweiger on the occasion of his 65th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susann Schweiger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trockenbacher, A., Suckow, V., Foerster, J. et al. MID1, mutated in Opitz syndrome, encodes an ubiquitin ligase that targets phosphatase 2A for degradation. Nat Genet 29, 287–294 (2001). https://doi.org/10.1038/ng762

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng762

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing