Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gene interaction and single gene effects in colon tumour susceptibility in mice

Abstract

To dissect the multigenic control of colon tumour susceptibility in the mouse1 we used the set of 20 CcS/Dem (CcS) recombinant congenic (RC) strains2. Each CcS strain carries a unique, random subset of approximately 12.5% of the genome of strain STS/A (STS) on the genetic background of BALB/cHeA (BALB/c)3. Previously, applying a protocol of 26 injections of 1,2-dimethylhydrazine (DMH), we detected two susceptibility loci, Scc1 and Scc2, on chromosome 2 (refs 4, 5). Using a shorter tumour-induction procedure, combining DMH and N-ethyl-N-nitrosourea (ENU) treatment, we demonstrate that BALB/c, STS and most CcS strains are relatively resistant. The strain CcS-19, however, is susceptible, probably due to a combination of BALB/c and STS alleles at several loci. Analysis of 192 (BALB/c × CcS-19) F2 mice revealed, in addition to the Scc1/Scc2 region, three new susceptibility loci: Scc3 on chromosome 1, Scc4 on chromosome 17 and Scc5 on chromosome 18. Scc4 and Scc5 have no apparent individual effect, but show a strong reciprocal interaction. Their BALB/c and STS alleles are not a priori susceptible or resistant but the genotype at one locus determines the effect of the allele at the second locus and vice versa. These findings and the accompanying paper on lung tumour susceptibility6 show that interlocus interactions are likely to be an important component of tumour susceptibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Demant, P., Resolution of susceptibility to cancer — new perspectives. Sem. Cancer Biol. 3, 159–166 (1992).

    CAS  Google Scholar 

  2. Demant, P. & Hart, A.A.M. Recombinant congenic strains — a new tool for analyzing genetic traits determined by more than one gene. Immunogenet. 24, 416–422 (1986).

    Article  CAS  Google Scholar 

  3. Moen, C.J.A. et al The recombinant congenic strains — a novel genetic tool applied to the study of colon tumor development in the mouse. Mamm. Genome 1, 217–227 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Moen, C.J.A., Snoek, M., Hart, A.A.M. & Demant, P. Scc1, a novel colon cancer susceptibility gene in the mouse: linkage to CD44 (Ly-24, Pgp1) on chromosome 2. Oncogene 7, 563–566 (1992).

    CAS  PubMed  Google Scholar 

  5. Moen, C.J.A., Groot, P.C., Hart, A.A.M., Snoek, M. & Demant, P.w Fine mapping of colon tumor susceptibility (Scc) genes in the mouse, different from the genes known to be somatically mutated in colon cancer. Proc. Natl. Acad. Sci. USA 93, 1082–1086 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fijneman, R.J.A., de Vries, S.S., Jansen, R.C. & Demant, P. Complex interactions of new quantitative trait loci, Sluc1, Sluc2, Sluc3 and Sluc4, that influence susceptibility to lung cancer in the mouse. Nature Genet. 14, 465–467 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Deschner, E.E., Long, F.C. & Maskens, A.P. Relationship between dose, time, and tumor yield in mouse dimethylhydrazine-induced colon tumors. Cancer Lett. 8, 23–28 (1979).

    Article  CAS  PubMed  Google Scholar 

  8. Groot, P.C. et al. The recombinant congenic strains for analysis of multigenic trate: genetic composition. FASEB J. 6, 2826–2835 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Stassen, A.P.M., Groot, P.C., Eppig, J.T. & Demant, P. Genetic composition of the recombinant congenic strains. Mamm. Genome 7, 55–58 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Dietrich, W.F. et al Genetic identification of Mom1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell 75, 631–639 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Fijneman, R.J.A. & Demant, P. A gene for susceptibility to small intestinal cancer, ssic1, maps to the distal part of mouse chromosome 4.Cancer Res. 55, 3179–3182 (1995).

    CAS  PubMed  Google Scholar 

  12. MacPhee M. . et al The secretory phospholipase A2 gene is a candidate for the Mom1 locus, a major modifier of ApcMin-induced intestinal neoplasia. Cell 81, 957–966 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Wu S. et al. TGF-beta is an autocrine-negative growth regulator of human colon carcinoma FET cells in vivo as revealed by transfection of an antisense expression vector. J. Cell. Biol. 116, 187–196 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Glaser, K.B., Mobilio, B., Chang, J.Y. & Senko, N. Phospholipase A2 enzymes: regulation and inhibition. Trends Pharmacol. Sci. 14, 92–98 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Neuman, R.J. & Rice, J.P. Two-locus models of disease. Genet. Epidemiol. 9, 347–365 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Risch, N., Ghosh, S. & Todd, J.A. Statistical evaluation of multiple locus linkage data in experimental species and its relevance to human studies: the application to nonobese diabetic (NOD) mouse and human insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 53, 702–714 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Schork, N.J., Boehnke, M., Terwilliger, J.D. & Ott, J. Two-trart-locus linkage analysis: a powerful strategy for mapping complex genetic traits. Am. J. Hum. Genet. 53, 1127–1136 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheverud, J.M. & Routman, E.J. Epistasis and its contribution to genetic variance components. Genetics, 139, 1455–1461 (1995).

    CAS  Google Scholar 

  19. Lark, K.G., Chase, K., Adler, F., Mansur, L.M. & Orf, J.H. Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another. Proc. Natl. Acad. Sci. USA 92, 4656–4660 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Coupland, G. Genetic and environmental control of flowering time in Arabidopsis. Trends Genet. 11, 393–397 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Richard, I. et al. Mutations in the proteolytic enzyme calpain 3 cause limb–girdle muscular dystrophy type 2A. Cell 81, 27–40 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Avner, P. Quantity and quality: polygenic analysis in the mouse. Nature Genet. 7, 3–4 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. De Sanctis, G.T. et al. Quantitative locus analysis of airway hyperresponsiveness in A/J and C57BL/6J mice. Nature Genet. 11, 150–154 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Frankel, W.N. et al. New seizure frequency QTL and the complex genetics in EL mice. Mamm. Genome 6, 830–838 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Laird, P.W. et al. A simplified mammalian DNA isolation procedure. Nucl. Acid Res. 19, 4293 (1991).

    Article  CAS  Google Scholar 

  26. Dietrich, W. et al. A genetic map for the mouse suitable for typing intraspecific crosses. Genetics 131, 423–447 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lander, E.S. & Schork, N.J. Genetic dissection of complex traits. Science 265, 2037–2048 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Demant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wezel, T., Stassen, A., Moen, C. et al. Gene interaction and single gene effects in colon tumour susceptibility in mice. Nat Genet 14, 468–470 (1996). https://doi.org/10.1038/ng1296-468

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1296-468

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing