Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Parental imprinting of the Mas protooncogene in mouse

Abstract

The Mas protooncogene on mouse chromosome 17 encodes a mitogenic G-protein-coupled cell surface receptor. We investigated the allele-specific expression pattern of the Mas gene on the basis of its proximity to the known imprinted gene for the insulin growth factor type II receptor (Igf2r). Phenotyping of mRNA demonstrated exclusive expression from the paternal allele in all embryonic tissues, including visceral yolk sac, between 11 and 12.5 days of gestation. By 13.5 days of gestation the paternal allele-specific expression of Mas was restricted to heart, tongue and visceral yolk sac, whereas all other tissues exhibited relaxation of the parental imprint. Our results demonstrate parental imprinting of Mas and suggest that the maternally inherited allele is transcriptionally repressed in a developmental and tissue-specific manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Surani, M.A.H., Barton, S.C. & Norris, M.L. Nuclear transplantation in the mouse: Heritable differences between parental genomes after activation of the embryonic genome. Cell 45, 127–136 (1986).

    Article  CAS  Google Scholar 

  2. Barton, S.C., Surani, M.A.H. & Norris, M.L. Role of paternal and maternal genomes in mouse development. Nature 311, 374–376 (1984).

    Article  CAS  Google Scholar 

  3. McGrath, J. & Solter, D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37, 179–183 (1984).

    Article  CAS  Google Scholar 

  4. Solter, D. Differential imprinting and expression of maternal and paternal genomes. A. rev. Genet. 22, 127–146 (1988).

    Article  CAS  Google Scholar 

  5. DeChiara, T.M., Robertson, E.J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859 (1991).

    Article  CAS  Google Scholar 

  6. Bartolomei, M.S., Zemel, S. & Tilghman, S.M. Parental imprinting of the mouse H19 gene. Nature 351, 153–155 (1991).

    Article  CAS  Google Scholar 

  7. Leff, S.E. et al. Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader-Willi syndrome region. Nature Genet. 2, 259–264 (1992).

    Article  CAS  Google Scholar 

  8. Barlow, D.P., Stoger, R., Herrmann, B.G., Saito, K. & Schweifer, N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349, 84–87 (1991).

    Article  CAS  Google Scholar 

  9. Cebra-Thomas, J.A. et al. Localization of the Mas proto-oncogene to a densely marked region of mouse chromosome 17 associated with genomic imprinting. Genomics 13, 444–446 (1992) (Erratum, Genomics 14, 208).

    Article  CAS  Google Scholar 

  10. Birchmeier, C., Young, D. & Wigler, M. Characterization of two new human oncogenes. Cold Spring Harbor Symp. Quant. Biol. 51, 993–1000 (1986).

    Article  CAS  Google Scholar 

  11. Young, D., Waitches, G., Birchmeier, C., Fasano, O. & Wigler, M. Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains. Cell 45, 711–719 (1986).

    Article  CAS  Google Scholar 

  12. Jackson, T.R., Blair, L.A.C., Marshall, J., Goedert, M. & Hanley, M.R. The mas oncogene encodes an angiotensin receptor. Nature 335, 437–440 (1988).

    Article  CAS  Google Scholar 

  13. Andrawis, N.S., Dzau, V.J. & Pratt, R.E. Autocrine stimulation of mas oncogene leads to altered growth control. Cell Biol. Int. Rep. 16, 547–556 (1992).

    Article  CAS  Google Scholar 

  14. Villar, A.J. & Pedersen, R.A. Spatially restricted imprinting of mouse chromosome 7. Mol. Reprod. Dev. 37, 247–254 (1994).

    Article  CAS  Google Scholar 

  15. Martin, K.A., Grant, S.G.N. & Hockfield, S. The mas proto-oncogene is developmentally regulated in the rat central nervous system. Dev. Brain Res. 68, 75–82 (1992).

    Article  CAS  Google Scholar 

  16. Reik, W. Genomic imprinting and genetic disorders in man. Trends Genet. 5, 331–336 (1989).

    Article  CAS  Google Scholar 

  17. Ogawa, O. et al. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms' tumour. Nature 362, 749–751 (1993).

    Article  CAS  Google Scholar 

  18. Ohlsson, R. et al. IGF2 is parentally imprinted during human embryogenesis and in the Beckwith-Wiedemann syndrome. Nature Genet. 4, 94–97 (1993).

    Article  CAS  Google Scholar 

  19. Rainier, S. et al. Relaxation of imprinted genes in human cancer. Nature 362, 747–749 (1993).

    Article  CAS  Google Scholar 

  20. Giddings, S.J., King, C.D., Harman, K.W., Flood, J.F. & Carnaghi, L.R. Allele-specific inactivation of insulin 1 and 2, in the mouse yolk sac, indicates imprinting. Nature Genet. 6, 310–313 (1994).

    Article  CAS  Google Scholar 

  21. Monnot, C. et al. Cloning and functional characterization of a novel mas-related gene, modulating intracellular angiotensin II actions. Molec. Endocrinol. 5, 1477–1487 (1991).

    Article  CAS  Google Scholar 

  22. Hanley, M.R. Molecular and cell biology of angiotensin receptors. J. cardiovasc. Pharmacol. 18 (Suppl. 2), S7–S13 (1991).

    Article  CAS  Google Scholar 

  23. Chaillet, J.R., Vogt, T.F., Beier, D.R. & Leder, P. Parental-specific methylation of an imprinted transgene is established during gametogenesis and progressively changes during embryogenesis. Cell 66, 77–83 (1991).

    Article  CAS  Google Scholar 

  24. Brandeis, M. et al. The ontogeny of allele-specific methylation associated with imprinted genes in the mouse. EMBO J. 12, 3669–3677 (1993).

    Article  CAS  Google Scholar 

  25. Li, E., Beard, C. & Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature 366, 362–365 (1993).

    Article  CAS  Google Scholar 

  26. Stoger, R. et al. Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73, 61–71 (1993).

    Article  CAS  Google Scholar 

  27. Zemel, S., Bartolomei, M.S. & Tilghman, S.M. Physical linkage of two mammalian imprinted genes, H19 and insulin-like growth factor 2. Nature Genet. 2, 61–65 (1992).

    Article  CAS  Google Scholar 

  28. Re, R.N. Cellular mechanisms of growth in cardiovascular tissue. Am. J. Cardiol. 60, 1041–1091 (1987).

    Article  Google Scholar 

  29. McClelland, M. & Nelson, M. Enhancement of the apparent cleavage specificities of restriction endonucleases: applications to megabase mapping of chromosomes. Gene Amplif. Anal. 5, 257–282 (1987).

    CAS  PubMed  Google Scholar 

  30. Varmuza, S. & Mann, M. Genomic imprinting — defusing the ovarian time bomb. Trends Genet. 10, 118–123 (1994).

    Article  CAS  Google Scholar 

  31. Moore, T. & Haig, D. Genomic imprinting in mammalian development. A parental tug-of-war. Trends Genet. 7, 45–49 (1991).

    Article  CAS  Google Scholar 

  32. Gold, J.D. & Pedersen, R.A. Mechanisms of genomic imprinting in mammals. Current Topics in Dev. Biol. 29, 227–280 (1994).

    Article  CAS  Google Scholar 

  33. Pedersen, R.A., Sturm, K.S., Rappolee, D.A. & Werb, Z. Effects of imprinting on early development of mouse embryos, in Preimplantation embryo development (ed. Bavister, B.D.) 212–226 (Springer-Veriag, New York, (1993).

    Chapter  Google Scholar 

  34. Janssen, J.W.G., Steenvoorden, A.C.M., Schmidtberger, M. & Bartram, C.R. Activation of the mas oncogene during transfection of monoblastic cell line DNA. Leukemia 2, 318–320 (1988).

    CAS  PubMed  Google Scholar 

  35. van't Veer, L.J., van den Berg-Bakker, L.A.M., Hermens, R.P.M.G., Deprez, R.L. & Schrier, P.I. High frequency of mas oncogene activation detected in the NIH3T3 tumorigenicity assay. Oncogene Res. 3, 247–254 (1988).

    Google Scholar 

  36. van't Veer, L.J. et al. Activation of the mas oncogene involves coupling to human alphoid sequences. Oncogene 8, 2673–2681 (1993).

    CAS  Google Scholar 

  37. Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J. & Rutter, W.J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  Google Scholar 

  38. Rappolee, D.A., Brenner, C.A., Schultz, R., Mark, D. & Werb, Z. Developmental expression of PDGF, TGF-α, and TGF-β genes in preimplantation mouse embryos. Science 241, 1823–1825 (1988).

    Article  CAS  Google Scholar 

  39. Rappolee, D.A., Mark, D., Banda, M.J. & Werb, Z. Wound macrophages express TGF-α and other growth factors in vivo: analysis by mRNA phenotyping. Science 241, 708–712 (1988).

    Article  CAS  Google Scholar 

  40. Sanger, F., Nicklen, S. & Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  CAS  Google Scholar 

  41. Fort, P. et al. Various rat adult tissues express only one major mRNA species from the glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucl. Acids Res. 13, 1431–1442 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villar, A., Pedersen, R. Parental imprinting of the Mas protooncogene in mouse. Nat Genet 8, 373–379 (1994). https://doi.org/10.1038/ng1294-373

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1294-373

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing