Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Telomere–associated chromosome fragmentation: applications in genome manipulation and analysis

Abstract

Telomere–associated chromosome fragmentation (TACF) is a new approach for chromosome mapping based on the non–targeted introduction of cloned telomeres into mammalian cells. TACF has been used to generate a panel of somatic cell hybrids with nested terminal deletions of the long arm of the human X chromosome, extending from Xq26 to the centromere. This panel has been characterized using a series of X chromosome loci. Recovery of the end clones by plasmid rescue produces a telomeric marker for each cell line and partial sequencing will allow the generation of sequence tagged sites (STSs). TACF provides a powerful and widely applicable method for genome analysis, a general way of manipulating mammalian chromosomes and a first step towards constructing artificial mammalian chromosomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barski, G., Sorieul, S. & Cornefert, F. Production dans des cultures in vitro de deux souches cellulaires en association, de cellules de caractere “hybride”. Compt. Rend. 251, 1825–1827 (1960).

    CAS  Google Scholar 

  2. Weiss, M. & Green, H. Human-mouse hybrid cell lines containing partial complements of human chromosomes and functioning human genes. Proc. natn. Acad. Sci. U.S.A. 58, 1104–1111 (1967).

    Article  CAS  Google Scholar 

  3. Ruddle, F.H. Linkage analysis using somatic cell hybrids in Advances in human genetics (eds Harris, H. & Hirschhorn, K.) 3, 173–235 (Plenum Press, New York, 1972).

    Chapter  Google Scholar 

  4. Human Mapping 11. Cytogenet. Cell Genet. 58 (1991).

  5. McBride, O.W. & Ozer, H.L. Transfer of genetic information by purified metaphase chromosomes. Proc. natn. Acad. Sci. U.S.A. 70, 1258–1262 (1973).

    Article  CAS  Google Scholar 

  6. Pritchard, C.A. & Goodfellow, P.N. Investigation of chromosome-mediated gene transfer using HPRT region of the human X chromosome as a model. Genes Devl. 1, 172–178 (1987).

    Article  CAS  Google Scholar 

  7. Bickmore, W., Christie, S., van Heyningen, V., Hastie, N.D. & Porteous, D. Hitchhiking from Hras1 to the WAGR locus With CMGT markers. Nucl. Acids Res. 16, 51–61 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goss, S.J. & Harris, H. New method for mapping genes in human chromosomes. Nature 255, 680–684 (1975).

    Article  CAS  PubMed  Google Scholar 

  9. Goss, S.J. & Harris, H. Gene transfer by means of cell fusion. J. cell Sci. 25, 17–37 (1977).

    CAS  PubMed  Google Scholar 

  10. Goodfellow, P.N. Irradiation and fusion gene transfer. In Methods in Molecular Biology (ed. Murray, E.J.) 7, 53–61 (Humana Press, Clifton, New Jersey, 1991).

    Google Scholar 

  11. Benham, F. et al. A method for generating hybrids containing nonselected fragments of human chromosomes. Genomics 4, 509–517 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Cox, D.R., Burmeister, M., Price, E.R., Kim, S. & Myers, R.M. Radiation Hybrid Mapping: A somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. Science 250, 245–250 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Glaser, T., Rose, E., Morse, H., Housman, D. & Jones, C. A panel of irradiation-reduced hybrids selectively retaining human chromosome 11p13: their structure and use to purify the WAGR gene complex. Genomics 6, 48–64 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Goodfellow, P.J., Povey, S., Nevanlinna, H.A. & Goodfellow, P.N. Generation of a panel of somatic cell hybrids containing unselected fragments of human chromosome 10 by X-ray irradiation and cell fusion: Application to isolating the MEN2A region in hybrid cells. Somat. Cell molec. Genet. 16, 163–171 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Ceccherini, I. et al. Construction of a map of chromosome 16 by using radiation hybrids. Proc. natn. Acad. Sci. U.S.A. 89, 104–108 (1992).

    Article  CAS  Google Scholar 

  16. Farr, C., Fantes, J., Goodfellow, P. & Cooke, H. Functional reintroduction of human telomeres into mammalian cells. Proc. natn. Acad. Sci. U.S.A. 88, 7006–7010 (1991).

    Article  CAS  Google Scholar 

  17. Vollrath, D., Davies, R.W., Connelly, C. & Hieter, P. Physical mapping of large DNA by chromosome fragmentation. Proc. natn. Acad. Sci. U.S.A. 85, 6027–6031 (1988).

    Article  CAS  Google Scholar 

  18. Capecchi, M.R. Altering the genome by homologous recombination. Science 244, 1288–1292 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Brown, C.J., Vivona, A., Parikh, S., Bedford, M. & Willard, H.F. Physical mapping of the human X chromosome by positive and negative counter-selection to generate broken chromosomes: “Pushmi-Pullyu” somatic cell hybrids. Cytogenet. cell Genet. 51, 970 (1989).

    Google Scholar 

  20. Luty, J.A. et al. Five polymorphic microsatellite VNTRs on the human X chromosome. Am. J. hum. Genet. 46, 776–783 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nussbaum, R.L., Airhart, S.D. & Ledbetter, D.H. A rodent-human hybrid containing Xq24-Xqter translocated to hamster chromosome expresses the Xq27 folate-sensitive fragile site. Am. J. med. Genet. 23, 457–466 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. Wieacker, P. et al. Toward a complete linkage map of the human X chromosome: regional assignment of 16 cloned single-copy DNA sequences employing a panel of somatic cell hybrids. Am. J. hum. Genet. 36, 265–276 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Litt, M. & Luty, J.A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. hum. Genet. 44, 397–401 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Weber, J.L. & May, P.E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. hum. Genet. 44, 388–396 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hazan, J., Dubay, C., Pankowiak, M.P., Becuwe, N. & Weissenback, J. A genetic linkage map of human chromosome 20 composed entirely of microsatellite markers. Genomics 12, 183–189 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Olson, M., Hood, L., Cantor, C. & Botstein, D. A common language for the physical mapping of the human genome. Science 245, 1434–1435 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. McClintock, B. The fusion of broken ends of sister half-chromatids following chromatid breakage at meiotic anaphases. Miss. Agric. Exp. Sta. Res. Bull. 290, 1–48 (1938).

    Google Scholar 

  28. McClintock, B. The significance of responses of the genome to challenge. Science 226, 792–801 (1984).

    Article  CAS  PubMed  Google Scholar 

  29. Smith, K.A., Stark, M.B., German, P.A. & Stark, G.R. Fusions neartelomeres occur very early in the amplification of CAD genes in Syrian hamster cells. Proc. natn. Acad. Sci U.S.A. 89, 5427–5431 (1992).

    Article  CAS  Google Scholar 

  30. Toledo, F., Le Roscouet, D., Buttin, G. & Debatisse, M. Co-amplified markers alternate in megabase long chromosomal inverted repeats and cluster independently in interphase nuclei at early steps of mammalian gene amplification. EMBO J. 11, 2665–2673 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cross, S.H. et al. The structure of a subterminal repeated sequence present on many human chromosomes. Nucl. Acids Res. 18, 6649–6657 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kaster, K.R., Burgett, S.G., Rao, R.N. & Ingolia, T.D. Analysis of a bacterial hygromycin B resistance gene by transcriptional anf translational fusions and by DNA sequencing. Nucl. Acids Res. 11, 6895–6911 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: a Laboratory Manual 2 edn (Cold Spring Harbor Laboratory Press, New York, 1989).

  34. Feinberg, A.P. & Vogelstein, B. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 137, 266–267 (1984).

    Article  CAS  PubMed  Google Scholar 

  35. Abbott, C. & Povey, S. Development of human chromosome-specfic PCR primers for the characterisation of somatic cell hybrids. Genomics 9, 73–77 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Theune, S., Fung, J., Todd, S., Sakaguchi, A.Y. & Naylor, S.L. PCR primers for human chromosomes: reagents for the rapid analysis of somatic cell hybrids. Genomics 9, 511–516 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Hermann, B.G., Barlow, D.P. & Lehrach, H. A large duplication allows homologous recombination between chromosomes heterozygous for the proximal t complex inversion. Cell 48, 813–825 (1987).

    Article  Google Scholar 

  38. Michelson, A.M., Bruns, G.A.P., Morton, C.C. & Orkin, S.H. The human phosphoglycerate kinase multigene family. J. biol. Chem. 260, 6982–6992 (1985).

    CAS  PubMed  Google Scholar 

  39. Lubahn, D.B. et al. The human androgen receptor: complementary deoxyribonucleic acid cloning, sequence analysis and gene expression in prostate. Molec. Endocrinol. 2, 1265–1275 (1988).

    Article  CAS  Google Scholar 

  40. Cole, C.G., Goodfellow, P.N., Bobrow, M. & Bentley, D.R. Generation of novel sequence tagged sites (STSs) from discrete chromosomal regions using Alu-PCR. Genomics 10, 816–826 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Fisher, E.M.C. et al. Homologous ribosomal protein genes on the human X and Y chromosomes: escape from X inactivation and possible implications for Turner Syndrome. Cell 63, 1205–1218 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Brown, C.J. et al. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349, 38–44 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Ram, K.T., Barker, D.F. & Puck, J.M. Dinucleotide repeat polymorphism at the DXS441 locus. Nucl. Acids Res. 20, 1428 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cremers, F.P.M., van de Pol, D.J.R., van Kerkhoff, L.P.M., Wieringa, B. & Ropers, H-H. Cloning of a gene that is rearranged in patients with choroideraemia. Nature 347, 674–677 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Stanier, P., Newton, R., Forbes, S.A., Ivens, A. & Moore, G.E. Polymorphic dinucleotide repeat at the DXS3 locus. Nucl. Acids Res. 19, 4793 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hostikka, S.L. et al. Identification of a distinct type IV collagen a chain with restricted kidney distribution and assignment of its gene to the locus of X chromosome-linked Alport syndrome. Proc. natn. Acad. Sci. U.S.A. 87, 1606–1610 (1990).

    Article  CAS  Google Scholar 

  47. Manoni, M. et al. The nucleotide sequence of a CpG island demonstrates the presence of the first exon of the gene encoding the human lysosomal membrane protein lamp2 and assigns the gene to Xq24. Genomics 9, 551–554 (1991).

    Article  CAS  PubMed  Google Scholar 

  48. Smets, D. & Arets, A. Genetic determination of fragile site expression. Am. J. hum. Genet. 47, 196–201 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farr, C., Stevanovic, M., Thomson, E. et al. Telomere–associated chromosome fragmentation: applications in genome manipulation and analysis. Nat Genet 2, 275–282 (1992). https://doi.org/10.1038/ng1292-275

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1292-275

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing