Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Defining the boundaries of zebrafish developmental genetics

Abstract

The first systematic, functional screens to identify the genes involved in vertebrate embryogenesis have been completed in the zebrafish, Danio rerio. In an extraordinary issue of the journal Development, devoted entirely to the results of these screens, over 500 mutant loci, many with multiple alleles, are described and classified according to the phenotypes they produce. Each class defines a small number of genes that act together to determine the proper development of many features of vertebrate anatomy, from the determination of body plan to the development of discrete organs and cell types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Haffter, P. et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36 (1996).

    CAS  Google Scholar 

  2. Driever, W. et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37–46 (1996).

    CAS  Google Scholar 

  3. Nüusslein-Volhard, C. & Weischaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    Article  Google Scholar 

  4. Nüsslein-Volhard, C., Weischaus, E. & Kluding, H. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster I. zygotic loci on the second chromosome. Roux Arch. Dev. Biol 193, 267–282 (1984).

    Article  Google Scholar 

  5. Jurgens, G., Weischaus, E. & Nüsslein-Volhard, C. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster II. zygotic loci on the second chromosome. Roux Arch Dev. Biol 193, 283–295 (1984).

    Article  CAS  Google Scholar 

  6. Weischaus, E., Nüsslein-Volhard, C. & Jurgens, G. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster III. zygotic loci on the X-chromosome and fourth chromosome. Roux Arch. Dev. Biol. 193, 296–307 (1984).

    Article  Google Scholar 

  7. Kimmel, C.B. Genetics and early development of zebrafish. Trends Genet. 5, 283–288 (1989).

    Article  CAS  Google Scholar 

  8. Postlethwait, J.H. et al. A genetic linkage map for the zebrafish. Science 264, 699–703 (1994).

    Article  CAS  Google Scholar 

  9. Kane, D.A. et al. The zebrafish epiboly mutants. Development 123, 47–55 (1996).

    CAS  PubMed  Google Scholar 

  10. Kane, D.A. et al. The zebrafish early arrest mutants. Development 123, 57–66 (1996).

    CAS  PubMed  Google Scholar 

  11. Solnicka-Krezel, L. et al Mutations affecting cell fates and Cellular rearrangements during gastrulation in zebrafish Development 123, 67–80 (1996).

    Google Scholar 

  12. Hammerschmidt, M. et. al. Mutations affecting morphogenesis during gastrulation and tail formation in the zebrafish, Danio rerio. Development 123, 143–151 (1996).

    CAS  PubMed  Google Scholar 

  13. Mullins, M.C. et al. Genes establishing dorsoventral pattern formation in the zebrafish embryo: the ventral specifying genes. Development 123, 81–93 (1996).

    CAS  PubMed  Google Scholar 

  14. Hammerschmidt, M. et al. dino and mercedes, two genes regulating dorsal development in the zebrafish embryo. Development 123, 95–102 (1996).

    CAS  PubMed  Google Scholar 

  15. Odenthal, J. et al. Mutations affecting the formation of the notochord in the zebrafish, Danio rerio. Development 123, 103–115 (1996).

    CAS  PubMed  Google Scholar 

  16. Stemple, D. et al. Mutations affecting development of the notochord in zebrafish. Development 123, 117–128 (1996).

    CAS  PubMed  Google Scholar 

  17. Brand, M. et al. Mutations affecting development of the midline and general body shape during zebrafish embryogenesis. Development 123, 129–142 (1996).

    CAS  PubMed  Google Scholar 

  18. van Eeden, F.J.M. et al. Mutations affecting somite formation and patterning in the zebrafish, Danio rerio. Development 123, 153–164 (1996).

    CAS  PubMed  Google Scholar 

  19. Schier, A.F. et al. Mutations affecting the development of the embryonic zebrafish brain. Development 123, 165–178 (1996).

    CAS  PubMed  Google Scholar 

  20. Brand, M. et al. Mutations in zebrafish genes affecting the formation of the boundary between midbrain and hindbrain. Development 123, 179–190 (1996).

    CAS  PubMed  Google Scholar 

  21. Jiang, Y.-J. et al. Mutations affecting neurogenesis and brain morphology in the zebrafish, Danio rerio. Development 123, 205–216 (1996).

    CAS  PubMed  Google Scholar 

  22. Heisenberg, C.-P. et al. Genes involved in forebrain development in the zebrafish, Danio rerio. Development 123, 191–203 (1996).

    CAS  PubMed  Google Scholar 

  23. Malicki, J. et al. Mutations affecting development of the zebrafish retina. Development 123, 263–273 (1996).

    CAS  PubMed  Google Scholar 

  24. Baier, H. et al. 1996 Genetic dissection of the retinotectal projection. Development 123, 415–425 (1996).

    CAS  PubMed  Google Scholar 

  25. Karlstrom, R.O. et al. Zebrafish mutations affecting retinotectal axon pathfinding. Development 123, 427–438 (1996).

    CAS  PubMed  Google Scholar 

  26. Trowe, T. et al. Mutations disrupting the ordering and topographic mapping of axons in the retinotectal projection of the zebrafish, Danio rerio. Development 123, 439–450 (1996).

    CAS  PubMed  Google Scholar 

  27. Furutani-Seiki, M. et al. Neural degeneration mutants in the zebrafish, Danio rerio. Development 123, 229–239 (1996).

    CAS  PubMed  Google Scholar 

  28. Abdelilah, S. et al. Mutations affecting neural survival in the zebrafish, Danio rerio. Development 123, 217–227 (1996).

    CAS  PubMed  Google Scholar 

  29. Whitfield, T.T. et al. Mutations affecting development of the zebrafish inner ear and lateral line. Development 123, 241–254 (1996).

    CAS  PubMed  Google Scholar 

  30. Malicki, J. et al. Mutations affecting development of the zebrafish ear. Development 123, 275–283 (1996).

    CAS  PubMed  Google Scholar 

  31. van Eeden, F.J.M. et al. Genetic analysis of fin formation in the zebrafish, Danio rerio. Development 123, 255–262 (1996).

    CAS  PubMed  Google Scholar 

  32. Stanier, D.Y.R. et al. Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123, 285–292 (1996).

    Google Scholar 

  33. Chen, J.-N. et al. Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development 123, 293–302 (1996).

    CAS  PubMed  Google Scholar 

  34. Weinstein, B.M. et al. Hematopoietic mutations in the zebrafish. Development 123, 303–309 (1996).

    CAS  PubMed  Google Scholar 

  35. Ransom, D.G. et al. Characterization of zebrafish mutants with defects in embryonic hematopoiesis. Development 123, 311–319 (1996).

    CAS  PubMed  Google Scholar 

  36. Schilling, T.F. et al. Jaw and branchial arch mutants in zebrafish I: branchial arches. Development 123, 329–344 (1996).

    CAS  PubMed  Google Scholar 

  37. Piotrowski, T. et al. Jaw and branchial arch mutants in zebrafish II: anterior arches and cartilage differentiation. Development 123, 345–356 (1996).

    CAS  PubMed  Google Scholar 

  38. Neuhauss, S.C.F. et al. Mutations affecting craniofacial development in zebrafish. Development 123, 357–367 (1996).

    CAS  PubMed  Google Scholar 

  39. Kelsh, R.N. et al. Zebrafish pigmentation mutations and the processes of neural crest development. Development 123, 369–389 (1996).

    CAS  PubMed  Google Scholar 

  40. Odenthal, J. et al. Mutations affecting xanthophore pigmentation in the zebrafish, Danio rerio. Development 123, 391–398 (1996).

    CAS  PubMed  Google Scholar 

  41. Granato, M. et al. Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development 123, 399–413 (1996).

    CAS  PubMed  Google Scholar 

  42. Pack, M. et al. Mutations affecting development of zebrafish digestive organs. Development 123, 321–328 (1996).

    CAS  PubMed  Google Scholar 

  43. Kimmel, C.B., Kane, D.A., Walker, C., Warga, R.M. & Rothman, M.B. A mutation that changes cell movement and Cell fate in the zebrafish embryo. Nature 337, 358–362 (1989).

    Article  CAS  Google Scholar 

  44. Halperin, M.E., Ho, R.K., Walker, C. & Kimmel, C.B. Induction of muscle pioneers and floor plate is distinguished by the zebrafish no tail mutation. Cell 75, 99–111 (1993).

    Article  Google Scholar 

  45. Münsterburg, A.E. & Lassar, A.B. Combinatorial signals from the neural tube, floor plate and notochord induce myogenic bHLH gene expression in the somite. Development 121, 651–660 (1995).

    Google Scholar 

  46. Currie, P.D. & Ingham, P.W. Induction of a specific muscle cell type by a hedgehog-like protein in zebrafish. Nature 382, 452–455 (1996).

    Article  CAS  Google Scholar 

  47. Karlstrom, R. & Kane, D.A. A flipbook of zebrafish embryogenesis. Development 123, 461 (1996).

    CAS  PubMed  Google Scholar 

  48. Knapik, E.W. et al. A reference cross DNA panel for zebrafish (Danio rerio) anchored with simple sequence length polymorphisms. Development 123, 451–460 (1996).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felsenfeld, A. Defining the boundaries of zebrafish developmental genetics. Nat Genet 14, 258–263 (1996). https://doi.org/10.1038/ng1196-258

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1196-258

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing