Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Deficiency of the β3 subunit of the type A γ–aminobutyric acid receptor causes cleft palate in mice

Abstract

In addition to its function in the nervous system, γ-aminobutyric acid (GABA) has been implicated in mouse craniofacial development by the results of both teratological1–3, and genetic studies4. We previously reported that disruption of the cleft palate 1 (cp1) locus, closely linked to the pink-eyed dilution (p) locus on mouse chromosome 7, causes a 95% penetrant, recessive, neonatally-lethal cleft palate (CP) in mice homozygous for the p4THO-II deletion4. We proposed that the β3 subunit gene (Gabrb3) of the GABAA receptor might be a candidate for cp1 (ref. 4); our earlier studies4,5 had localized cp1 to an interval beginning distal to the gene for the GABAA receptor α5 subunit (Gabra5) and ending within the Gabrb3 coding region. To test the hypothesis that deletion of Gabrb3, and not another gene in the interval, causes CP, we performed an experiment to rescue the CP phenotype by introducing a Gabrb3 trans-gene into p4THO-II homozygotes. We now show that such transgenic mice are phenotypically normal, indicating that Gabrb3 is indeed the cp1 locus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Miller, R.P. & Becker, B.A. Teratogenicity of oral diazepam and diphenylhydantoin in mice. Tox. App. Pharmac. 32, 53–61 (1975).

    Article  CAS  Google Scholar 

  2. Wee, E.L. & Zimmerman, E.F. Involvement of GABA in palate morphogenesis and its relation to diazepam teratogenesis in two mouse strains. Teratology 28, 15–22 (1983).

    Article  CAS  PubMed  Google Scholar 

  3. Wee, E.L., Norman, E.J. & Zimmerman, E.F. Presence of GABA in embryonic palates of AJ and SWV mouse strains. J. Craniofac. Genet dev. Biol 6, 53–61 (1986).

    CAS  PubMed  Google Scholar 

  4. Culiat, C.T. et al. Concordance between isolated cleft palate in mice and alterations within a region including the gene encoding the β3 subunit of the type A γ-aminobutyric acid receptor. Proc. natn. Acad. Sci. U.S.A. 90, 5105–5109 (1993).

    Article  CAS  Google Scholar 

  5. Culiat, C.T., Stubbs, L.J., Montgomery, C.S., Russell, L.B. & Rinchik, E.M. Phenotypic consequences of the deletion of the γ3, α5 or β3 subunit of the type A γ-aminobutyric acid receptor in mice. Proc. natn. Acad. Sci. U.S.A. 91, 2815–2818 (1994).

    Article  CAS  Google Scholar 

  6. Gunning, P., Leavitt, J., Muscat, G., Ng, S.-Y. & Kedes, L. A human β-actin expression vector system directs high level accumulation of antisense transcripts. Proc. natn. Acad. Sci. USA. 84, 4831–4835 (1987).

    Article  CAS  Google Scholar 

  7. Ymer, S. et al. GABAA receptor β subunit heterogeneity: functional expression of cloned cDNAs. EMBO J. 8, 1665–1670 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nicholls, R.D. et al. Evaluation of potential models for imprinted and non-imprinted components of human chr 15q11-13 syndromes by fine structure homology mapping in the mouse. Proc. natn. Acad. Sci. U.S.A. 90, 2050–2054 (1993).

    Article  CAS  Google Scholar 

  9. Zimmerman, E.F. & Wee, E.L. Role of neurotransmitters in palate development. Curr. Topics dev. Biol. 19, 37–63 (1984).

    Article  CAS  Google Scholar 

  10. Zimmerman, E.F. Role of neurotransmitters in palate development and teratologic implications. Prog. clin. biol. Res. 171, 283–294 (1985).

    CAS  PubMed  Google Scholar 

  11. Laurie, D.J., Wisden, W. & Seeburg, P.H. The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain II. Embryonic and postnatal development. J. Neurosci. 12, 4151–4172 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, J., Sato, M. & Tohyama, M. Different postnatal development profiles of neurons containing distinct GABAA receptor β subunit mRNAs. J. comp. Neurol. 308, 586–613 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Kirkness, E.F. & Fraser, C.M. A strong promoter element is located between alternative exons of a gene encoding the human γ-aminobutyric acid. J. biol. Chem. 268, 4420–4428 (1993).

    CAS  PubMed  Google Scholar 

  14. Wagstaff, J. et al. Localization of the gene encoding the GABAA receptor β3 subunit to the Angelman/Prader-Willi region of human chr 15. Am. J. hum. Genet. 49, 330–337 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Butler, M.G. Prader-Willi syndrome: current understanding of cause and diagnosis. Am. J. med. Genet. 35, 319–332 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clayton Smith, J. & Pembrey, M.E. Angleman Syndrome. J. med. Genet. 29, 412–415 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brilliant, M.H. The mouse pink-eyed dilution locus: a model for aspects of Prader-Willi syndrome, Angelman syndrome and a form of Hypomelanosis of Ito. Mamm. Genome 3, 187–1191 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Butler, M.G. Prader-Willi syndrome: Current understanding of cause and diagnosis. Am. J. med. Genet. 35, 319–332 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Greger, V., Woolf, E. & Lalande, M. Cloning the breakpoints of a submicroscopic deletion in an Angelman syndrome patient. Hum. molec. Genet. 2, 921–924 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Hogan, B., Costantini, F. & Lacy, E. Manipulating the Mouse Embryo, A Laboratory Manual. (Cold Spring Harbor Laboratory Press, New York, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Culiat, C., Stubbs, L., Woychik, R. et al. Deficiency of the β3 subunit of the type A γ–aminobutyric acid receptor causes cleft palate in mice. Nat Genet 11, 344–346 (1995). https://doi.org/10.1038/ng1195-344

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1195-344

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing