Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inversin, a novel gene in the vertebrate left-right axis pathway, is partially deleted in the inv mouse

An Erratum to this article was published on 01 November 1998

Abstract

Visceral left-right asymmetry occurs in all vertebrates, but the inversion of embryo turning (inv) mouse, which resulted following a random transgene insertion, is the only model in which these asymmetries are consistently reversed1. We report positional cloning of the gene underlying this recessive phenotype. Although transgene insertion was accompanied by neighbouring deletion and duplication events1,2, our YAC phenotype rescue studies indicate that the mutant phenotype results from the deletion. After extensively characterizing the 47-kb deleted region and flanking sequences from the wild-type mouse genome, we found evidence for only one gene sequence in the deleted region. We determined the full-length 5.5-kb cDNA sequence and identified 16 exons, of which exons 3-11 were eliminated by the deletion, causing a frameshift. The novel gene specifies a 1062-aa product with tandem ankyrin-like repeat sequences. Characterization of complementing and non-complementing YAC transgenic families revealed that correction of the inv mutant phenotype was concordant with integration and intact expression of this novel gene, which we have named inversin (Invs).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genomic organization of the mouse Invs gene and cDNA contig assembly.
Figure 2: Phenotype rescue.
Figure 3: Chromosome FISH.
Figure 4: Expression of the novel gene containing ankyrin-like repeats.
Figure 5: cDNA sequence of Invs.
Figure 6: Inferred Invs protein sequence and tandum ankyrin-like repeats.
Figure 7: Analysis of genomic organization and expression of Invs in YAC transgenic lines.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Yokoyama, T. et al. Reversal of Left-Right Asymmetry: A Situs Inversus Mutation. Science 260, 679– 682 (1993).

    Article  CAS  Google Scholar 

  2. Yokoyama, T., Harrison, W.R., Elder, F.F.B. & Overbeek, P.A. in Developmental Mechanisms of Heart Disease. (Futura Publishing, New York, 1995).

    Google Scholar 

  3. Kaufman, M.H. in The Atlas of Mouse Development. (Academic Press, London, 1995).

    Google Scholar 

  4. Nascone, N. & Mercola, M. Organizer induction determines left-right asymmetry in Xenopus. Developmental Biology 189, 68–78 (1997).

    Article  CAS  Google Scholar 

  5. Hyatt, B.A., Lohr, J.L. & Yost, H.-J. Initiation of vertebrate L-R axis formation by maternal Vg1. Nature 384, 62–65 (1996).

    Article  CAS  Google Scholar 

  6. Levin, M., Johnson, R.L., Stern, C.D., Kuehn, M. & Tabin C. A molecular pathway determining left-right asymmetry in chick embryogenesis . Cell 82, 803–814 (1995).

    Article  CAS  Google Scholar 

  7. Levin, M. Left-right asymmetry in vertebrate embryogenesis. BioEssays 19, 287–296 (1997).

    Article  CAS  Google Scholar 

  8. Varlet, I. & Robertson, E.J. Left-right asymmetry in vertebrates . Curr. Opin. Genet. Dev. 7, 519– 523 (1997).

    Article  CAS  Google Scholar 

  9. Wood, W.B. Left-right asymmetry in animal development. Annu. Rev. Cell Dev. Biol. 13, 53–82 ( 1997).

    Article  CAS  Google Scholar 

  10. Levin, M. Left-right asymmetry and the chick embryo. Seminars Cell Dev. Biol. 9, 67–76 (1998 ).

    Article  CAS  Google Scholar 

  11. Levin, M. & Mercola, M. The compulsion of chirality: toward an understanding of left-right asymmetry. Genes Dev. 12, 763–769 (1998).

    Article  CAS  Google Scholar 

  12. Harvey, R.P. Links in the Left/Right Axial Pathway. Cell 94, 273–276 (1998).

    Article  CAS  Google Scholar 

  13. Collignon, J., Varlet, I. & Robertson, E.J. Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 381, 155–158 (1996).

    Article  CAS  Google Scholar 

  14. Lowe, L.A. et al. Conserved left-right asymmetry of nodal expression and alterations in murine situs inversus. Nature 381, 158–161 (1996).

    Article  CAS  Google Scholar 

  15. Meno, C. et al. Left-right asymmetric expression of the TGF ß- family member lefty in mouse embryos. Nature 381, 151– 155 (1996).

    Article  CAS  Google Scholar 

  16. Meno, C. et al. Two closely related left-right asymmetrically expressed genes, lefty-1 and lefty-2: their distinct expression domains, chromosomal linkage and direct neuralizing activity in Xenopus embryos. Genes Cells 2, 513–525 ( 1997).

    Article  CAS  Google Scholar 

  17. Meno, C. et al. lefty-1 is required for left-right determination as a regulator of lefty-2 and nodal. Cell 94, 287–297 (1998).

    Article  CAS  Google Scholar 

  18. Oh, S.P. & Li, E. The signaling pathway mediated by the type IIB activin receptor controls axial patterning and lateral asymmetry in the mouse. Genes Dev. 11, 1812– 1826 (1997).

    Article  CAS  Google Scholar 

  19. Piedra, M.E., Icardo, J.M., Albajar, M., Rodriguez-Rey, J.C. & Ros, M.A. Pitx2 participates in the late phase of the pathway controlling left-right asymmetry. Cell 94, 319–324 (1998).

    Article  CAS  Google Scholar 

  20. Logan, M., Pagán-Westphal, M., Smith, D.M., Paganessi, L. & Tabin, C.J. The transcription factor pitx2 mediates situs-specific morphogenesis in response to left-right asymmetric signals. Cell 94, 307–317 (1998).

    Article  CAS  Google Scholar 

  21. Yoshioka, H. et al. Pitx2, a bicoid-type homeobox gene, is involved in a lefty-signaling pathway in determination of left-right asymmetry. Cell 94, 299–305 ( 1998).

    Article  CAS  Google Scholar 

  22. Ryan, A.K. et al. Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature 394, 545– 551 (1998).

    Article  CAS  Google Scholar 

  23. Penman-Splitt, M., Burn, J. & Goodship, J. Defects in the determination of left-right asymmetry . J. Med. Genet. 33, 498– 503 (1996).

    Article  Google Scholar 

  24. Gebbia, M. et al. X-linked situs abnormalities result from mutations in ZIC3. Nature Genet. 17, 305– 309 (1997).

    Article  CAS  Google Scholar 

  25. Supp, D.M., Witte, D.P., Potter, S.S. & Brueckner, M. Mutation of an axonemal dynein affects left right asymmetry in inversus viscerum mice. Nature 389, 963– 966 (1997).

    Article  CAS  Google Scholar 

  26. Klar, A.J. A model for specification of the left-right axis in vertebrates. Trends Genet. 10, 392–396 (1994).

    Article  CAS  Google Scholar 

  27. Larin, Z., Monaco, A.P. & Lehrach, H. Yeast artificial chromosome libraries containing large inserts from mouse and human DNA. Proc. Natl Acad. Sci. USA. 88, 4123–4127 (1991).

    Article  CAS  Google Scholar 

  28. Smith, D.J., Zhu, Y., Zhang, J., Cheng, J.F. & Rubin, E.M. Construction of a panel of transgenic mice containing a contiguous 2-MB set of YAC/P1 clones from human chromosome 21q22.2. Genomics 27, 425–434 ( 1995).

    Article  CAS  Google Scholar 

  29. Kozak, M. Interpreting cDNA sequence: some insights from studies on translation. Mamm. Genome 7, 563–574 (1996).

    Article  CAS  Google Scholar 

  30. Bork, P. Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally? Proteins: structure, function and genetics. 17, 363–374 (1993).

    Article  CAS  Google Scholar 

  31. Gnirke, A., Huxley, C., Peterson, K. & Olson, M.V. Microinjection of intact 200- to 500-kb fragments of YAC DNA into mammalian cells. Genomics 15, 659–667 ( 1993).

    Article  CAS  Google Scholar 

  32. Huxley, C. Transfer of YACs to mammalian cells and transgenic mice. in Genetic Engineering (ed. Setlow, J.K.) 65–91 (Plenum Press, New York, 1994).

  33. Hogan, B., Beddington, R., Costantini, F. & Lacy, E. Manipulating the Mouse Embryo: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, 1994).

    Google Scholar 

  34. Robinson, T.J. & Elder, F.F. Multiple common fragile sites are expressed in the genome of the laboratory rat. Chromosoma 96, 45–49 ( 1987).

    Article  CAS  Google Scholar 

  35. Valdes, J.M., Tagle, D.A., & Collins, F.S. Island rescue PCR: a rapid and efficient method for isolating transcribed sequences from yeast artificial chromosomes and cosmids . Proc. Natl Acad. Sci. 91, 5377– 81 (1994).

    Article  CAS  Google Scholar 

  36. Silverman, G.A. et al. Yeast artificial chromosome cloning of a two-megabase-size contig within chromosomal band 18q21 establishes physical linkage between BCL2 and plasminogen activator inhibitor type-2. Genomics 9, 219–228 (1991).

    Article  CAS  Google Scholar 

  37. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning. A laboratory manual. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989).

    Google Scholar 

  38. Harrison, S.M., Dunwoodie, S.L., Arkell, R.M., Lehrach, H. & Beddington, R.S.P. Isolation of novel tissue-specific genes from cDNA libraries representing the individual tissue constituents of the gastrulating mouse embryo. Development 121, 2479–2489 (1995).

    CAS  PubMed  Google Scholar 

  39. Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. PCR protocols. A guide to methods and applications. (Academic Press, San Diego, 1990).

    Google Scholar 

  40. Ewing, B. & Green, P. Base calling of automated sequencer traces using PHRED. I. Accuracy assessment. Genome Res. in press.

  41. Bonfield, J.K., Smith, K.F. & Staden, R.A. A new DNA sequence assembly program. Nucleic Acid Res. 24, >4999 (1995).

  42. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal. Biochem. 162, 156– 159 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Weddle and J. Ellsworth for help in preparing the manuscript; J. Ash and J. Reddan for help designing and assembling the figures; B. Harris for technical assistance; S. Dunwoodie and R. Beddington for providing E7.5 cDNA filters; T. Yokoyama for the G16 and E121 cosmid clones; and M. Finegold for helpful discussions regarding the kidney and pancreatic pathology. All animal experiments were done in accordance with NIH guidelines. This work was financially supported by the University of Newcastle upon Tyne Research Committee, the British Heart Foundation, the Wellcome Trust, the UK Medical Research Council and the US N.I.H.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Judith Goodship or Tom Strachan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, D., Turnpenny, L., Goodship, J. et al. Inversin, a novel gene in the vertebrate left-right axis pathway, is partially deleted in the inv mouse. Nat Genet 20, 149–156 (1998). https://doi.org/10.1038/2450

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2450

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing