Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Telomeric localization of TRF2, a novel human telobox protein

Abstract

Natural chromosomal ends are stabilized by proteins that bind duplex telomeric DNA repeats. In human cells, the TTAGGG Repeat Factor 1 (TRF1) was identified by two independent studies, one screening for factors that bind duplex telomeric DNA1,2 and the other screening for proteins containing a particular Myb motif called the telobox, which is required for telomeric repeat recognition (Fig. 1a; refs 3–5). A second human open reading frame, orf2, contains a telobox sequence and encodes a polypeptide that specifically recognizes mammalian telomeric repeat DNA in vitro3. We show that two proteins of 65 and 69 kD, expressed in HeLa cells, contain the orf2 telobox sequence. These proteins are collectively termed TRF2. Affinity-purified antibodies specific for anti-TRF2 label the telomeres of intact human chromosomes, strengthening the correlation between occurrence of telobox and telomere-repeat recognition in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zhong, Z., Shiue, L., Kaplan, S. & de Lange, T. A mammalian factor that binds telomeric TTAGGG repeats in vitro. Mol. Cell Biol. 12, 4834–4843 (1992).

    Article  CAS  Google Scholar 

  2. Chong, L. et al. A human telomeric protein. Science 270, 1663–1667 (1995).

    Article  CAS  Google Scholar 

  3. Bilaud, T. et al. The telobox, a myb-related telomeric DNA binding motif found in proteins from yeast, plants, and human. Nucleic Acids Res. 24, 1294–1303 (1996).

    Article  CAS  Google Scholar 

  4. Promisel Cooper, J., Nimmo, E.R., Allshire, R.C. & Cech, T.R. Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385, 744–747 (1997).

    Article  Google Scholar 

  5. Brun, C., Marcand, S. & Gilson, E. Proteins that bind to double-stranded regions of telomeric DNA. Trends Cell Biol. 7, 317–324 (1997).

    Article  CAS  Google Scholar 

  6. Smith, S. & de Lange, T. TRF1, a mammalian telomeric protein. Trends Genet. 13, 21–26 (1997).

    Article  CAS  Google Scholar 

  7. Nickerson, J.A., Krockmalnic, G., Wan, K.M. & Penman, S. The nuclear matrix revealed by eluting chromatin from a cross-linked nucleus. Proc. Natl. Acad. Sci. USA 94, 4446–4450 (1997).

    Article  CAS  Google Scholar 

  8. de Lange, T. Human telomeres are attached to the nuclear matrix. EMBO J. 11, 717–724 (1992).

    Article  CAS  Google Scholar 

  9. Ludérus, M.E.E. et al. Structure, subnuclear distribution, and nuclear matrix association of the mammalian telomeric complex. J. Cell Biol. 135, 867–881 (1996).

    Article  Google Scholar 

  10. Bianchi, A., Smith, S., Chong, L., Elias, P. & de Lange, T. TRF1 is a dimer and bends telomeric DNA. EMBO J. 16, 1785–1794 (1997).

    Article  CAS  Google Scholar 

  11. Alfonso, P.J., Crippa, M.P., Hayes, J.J. & Bustin, M. The footprint of chromosomal proteins HMG14 and HMG17 on chromatin subunits. J. Mol. Biol. 236, 189–198 (1994).

    Article  CAS  Google Scholar 

  12. Lejnine, S., Makarov, V.L. & Langmore, J.P. Conserved nucleoprotein structure at the ends of vertebrate and invertebrate chromosomes. Proc. Natl. Acad. Sci. USA 92, 2393–2397 (1995).

    Article  CAS  Google Scholar 

  13. Muyldermans, S., De Jonge, J., Wyns, L. & Travers, A.A. Differential association of linker histones H1 and H5 with telomeric nucleosomes in chicken erythrocytes. Nucleic Acids Res. 22, 5635–5639 (1994).

    Article  CAS  Google Scholar 

  14. Tommerup, H., Dousmanis, A. & de Lange, T. Unusual chromatin in human telomeres. Mol. Cell. Biol. 14, 5777–5785 (1994).

    Article  CAS  Google Scholar 

  15. van Steensel, B. & de Lange, T. Control of telomere length by the human telomeric protein TRF1. Nature 385, 740–743 (1997).

    Article  CAS  Google Scholar 

  16. Gasser, S.M., Laroche, T., Falquet, J., Boy de la Tour, E. & Laemmli, U.K. Metaphase chromosome structure: involvement of topoisomerase II. J. Mol. Biol. 1986, 613–629 (1986).

    Article  Google Scholar 

  17. Gasser, S.M. & Laemmli, U.K. Improved methods for the isolation of individual and clustered mitotic chromosomes. Exp. Cell Res. 173, 85–98 (1987).

    Article  CAS  Google Scholar 

  18. Lipsick, J.S. One billion years of Myb. Oncogene 13, 223–235 (1996).

    CAS  PubMed  Google Scholar 

  19. Broccoli, D. et al. Comparison of the human and mouse genes encoding the telomeric protein TRF1: chromosomal localization, expression and conserved protein domains. Hum. Mol. Genet. 6, 69–76 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Gilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilaud, T., Brun, C., Ancelin, K. et al. Telomeric localization of TRF2, a novel human telobox protein. Nat Genet 17, 236–239 (1997). https://doi.org/10.1038/ng1097-236

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1097-236

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing