Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Targeted disruption of the murine erythroid band 3 gene results in spherocytosis and severe haemolytic anaemia despite a normal membrane skeleton

Abstract

Band 3 is the most abundant integral protein of the red blood cell membrane1,2. It performs two critical biological functions: maintaining ionic homeostasis, by transporting Cl and HCO3 ions, and providing mechanical stability to the erythroid membrane1,2. Erythroid band 3 (AE1) is one of three anion exchangers that are encoded by separate genes3. The AE1 gene is transcribed by two promoters: the upstream promoter produces erythroid band 3, whereas the downstream promoter initiates transcription of the band 3 isoform in kidney4. To assess the biological consequences of band 3 deficiency, we have selectively inactivated erythroid but not kidney band 3 by gene targeting in mice. Although no death in utero occurred, the majority of homozygous mice die within two weeks after birth. The erythroid band 3 null mice show retarded growth, spherocytic red blood cell morphology and severe haemolytic anaemia. Remarkably, the band 3−/− red blood cells assembled normal membrane skeleton thus challenging the notion that the presence of band 3 is required for the stable biogenesis of membrane skeleton. The availability of band 3−/− mice offers a unique opportunity to investigate the role of erythroid band 3 in the regulation of membrane-skeletal interactions, anion transport and the invasion and growth of malaria parasite into red blood cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lux, S.E. & Palek, J. Disorders of the red cell membrane. In BLOOD: Principles and Practice of Hematology. (eds Handin, R.I., Lux, S.E. & Stossel, T.P.)(J.B. Lippincott Company, Philadelphia, 1995).

    Google Scholar 

  2. Tanner, M.J. A.Molecular and cellular biology of the erythrocyte anion exchanger (AE1). Sem. Hematol. 30, 34–57 (1993).

    CAS  Google Scholar 

  3. Alper, S.L. The band 3-related anion exchanger (AE) gene family. Annu. Rev. Physiol. 53, 549–564 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Alper, S.L., Kopito, R.R., Libresco, S.M. & Lodish, H.F. Cloning and characterization of a murine band 3-related cDNA from kidney and from a lymphoid cell line. J. Biol. Chem. 263, 17092–17099 (1988).

    CAS  PubMed  Google Scholar 

  5. Hogan, B., Beddington, R., Constantini, F. & Lacy, E. in Manipulating the mouse embryo. A laboratory manual. 2nd Edn. (Cold Spring Harbor Laboratory Press, 1994).

    Google Scholar 

  6. Woods, C.M., Boyer, B., Vogt, R.K. & Lazarides, E. Control of erythroid differentiation: Asynchronous expression of the anion transporter and the peripheral components of the membrane skeleton in AEV-and S13-transformed cell. J. Cell Biol. 103, 1789–1798 (1986).

    Article  CAS  PubMed  Google Scholar 

  7. Lazarides, E. From genes to structural morphogenesis. The genesis and epigenesis of a red blood cell. Cell 51, 345–356 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Hanspal, M. & Palek, J. Synthesis and assembly of membrane skeletal proteins in mammalian red cell precursors. J. Cell. Biol. 105, 1417–1424 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Hanspal, M., Hanspal, J.S., Kalraiya, R. & Palek, J. The expression and synthesis of the band 3 protein initiates the formation of a stable membrane skeleton in murine Rauscher-transformed erythroid cells. Eur. J. Cell. Biol. 58, 313–318 (1992).

    CAS  PubMed  Google Scholar 

  10. Michaely, P. & Bennett, V. Mechanism for binding site diversity on ankyrin. J. Biol. Chem. 270, 31298–31302 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Pasternack, G.R., Anderson, R.A., Leto, T.L. & Marchesi, V.T. Interactions between protein 4.1 and band 3. An alternative binding site for an element of the membrane skeleton. J. Biol. Chem. 260, 3676–3683 (1985).

    CAS  PubMed  Google Scholar 

  12. Danilov, Y.N., Fennell, R., Ling, E. & Cohen, C.M. Selective modulation of band 4.1 binding to erthrocyte membranes by protein kinase C. J. Biol. Chem. 265, 2556–2562 (1990).

    CAS  PubMed  Google Scholar 

  13. Lombardo, C.R., Willardson, B.M. & Low, P.S. Localization of the protein 4.1-binding site on the cytoplasmic domain of erythrocyte membrane band 3. J. Biol. Chem. 267, 9540–9546 (1992).

    CAS  PubMed  Google Scholar 

  14. Jons, T. & Drenckhahn, D. Identification of the binding interface involved in linkage of cytoskeletal protein 4.1 to the erythrocyte anion exchanger. EMBO J. 11, 2863–2867 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Inaba, M. et al. Defective anion transport and marked spherocytosis with membrane instability caused by hereditary total deficiency of red cell band 3 in cattle due to a nonsense mutation. J. Clin. Invest. 97, 1804–1817 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Okoye, V.C.N. & Bennett, V. Plasmodium falciparum malaria, Band 3 as a possible receptor during invasion of human erythrocytes. Science 227, 169–171 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, S.C., Palek, J., Prchal, J. & Castleberry, R.P. Altered spectrin dimer-dimer association and instability of erythrocyte membrane skeletons in hereditary pyropoikilocytosis. J. Clin. Invest. 68, 597–605 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, S.C., Derick, L.H. & Palek, J. Visualization of the hexagonal lattice in the erythrocyte membrane skeleton. J. Cell Biol. 104, 527–536 (1987).

    Article  CAS  PubMed  Google Scholar 

  19. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  PubMed  Google Scholar 

  20. Kopito, R.R., Andersson, M. & Lodish, H.F. Structure and organization of the murine band 3 gene. J. Biol. Chem. 262, 8035–8040 (1987).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Southgate, C., Chishti, A., Mitchell, B. et al. Targeted disruption of the murine erythroid band 3 gene results in spherocytosis and severe haemolytic anaemia despite a normal membrane skeleton. Nat Genet 14, 227–230 (1996). https://doi.org/10.1038/ng1096-227

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1096-227

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing