Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain

Abstract

Adeno-associated viral (AAV) vectors are non-pathogenic, integrating DNA vectors in which all viral genes are removed and helper virus is completely eliminated. To evaluate this system in the post-mitotic cells of the brain, we found that an AAV vector containing the LacZ gene (AAVIac) resulted in expression of β-galactosidase up to three months post-injection in vivo. A second vector expressing human tyrosine hydroxylase (AAVth) was injected into the denervated striatum of unilateral 6-hydroxydopamine-lesioned rats. Tyrosine hydroxylase (TH) immunoreactivity was detectable in striatal neurons and glia for up to four months and we also found significant behavioural recovery in lesioned rats treated with AAVth versus AAVIac controls. Safe and stable TH gene transfer into the denervated striatum may have potential for the genetic therapy of Parkinson's disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Miller, D.G., Adam, M.A & Miller, A.D. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Molec. cell. biol. 10, 4329–4242 (1990).

    Article  Google Scholar 

  2. Ho, D.Y. & Mocarski, E.S. B-galactosidase as a marker in the peripheral and neural tissues of the herpes-simplex virus-infected mouse. Virology 167, 279–283 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Breakefield, X.O. & Deluka, N.A. Herpes simplex virus for gene delivery to neurons. New Biol. 3, 203–218 (1991).

    CAS  PubMed  Google Scholar 

  4. Rotzman, B. & Jenklns, F.J. Genetic engineering of novel genomes of large DNA viruses. Science 229, 1208–1214 (1985).

    Article  Google Scholar 

  5. Johnson, P.A. et al. Cytotoxicrty of a replication defective mutant of herpes simplex virus 1. J. Virol. 66, 2952–2955 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Le Gal La Salle, G. et al. An adenovirus vector for gene transfer into neruons and glia in the brain. Science 259, 988–990 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Akli, S. et al. Transfer of a foreign into the brain using adenovirus vectors. Nature Genetics 3, 224–228 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Davidson, B.L. et al. A model system for in vivo gene transfer into the central nervous system using an adenoviral vector. Nature Genet. 3, 219–223 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Neve, R.L. Adenovirus vectors enter the brain. Trends Neurosci. 16, 251–253 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Spaete, R.R. & Frenkel, N. The herpes simplex virus amplicon: A new eucaryotic defective-virus cloning-amplifying vector. Cell. 30, 295–304 (1982).

    Article  CAS  PubMed  Google Scholar 

  11. Kwong, A.D. & Frenkel, N. The herpes simplex virus amplicon IV. Effecient expression of a chimeric chicken ovalbumin gene amplified within defective virus genomes. Virology 142, 421–425 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. Kaplitt, M.G. et al. Expression of afunctional foreign gene in adult mammalian brain following in vivo transfer viaaherpes simplex virus type 1 defective viral vector. Molec. cell. Neurosci. 2, 320–330 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Kaplitt, M.G. et al. Preproenkephalin promoter yields region-specific and long-term expression in adult brain following direct in vivo gene transfer via a defective herpes simplex viral vector. Proc. natn. Acad. Sci. U.S.A. 19, 8979–8983 (1994).

    Article  Google Scholar 

  14. Ho, D.Y., Mocarski, E.S. & Sapolsky, R.M. Altering central nervous system physiology with a defective herpes simplex virus vector expressing the glucose transporter gene. Proc. natn. Acad. Sci. USA. 90, 3655–3659 (1993).

    Article  CAS  Google Scholar 

  15. Geller, A.I., Keyomarski, K., Bryan, J. & Pardee, A.B. An efficient deletion mutant packaging system for defective HSV-1 vectors; potential applications to neuronal physiology and human gene therapy. Proc. natn. Acad. Sci. U.S.A. 87, 8950–8954 (1990).

    Article  CAS  Google Scholar 

  16. Bems, K.I. & Hauswirth, W.W. Adeno-associated viruses. Adv. Virus Res. 26, 407–409 (1979).

    Google Scholar 

  17. Muzyczka, N. Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr. Top. Microbiol. Immunol. 158, 97–129 (1992).

    CAS  PubMed  Google Scholar 

  18. Samulski, R.J., Chang, L.-S. & Shenk, T. A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J. Virol. 61, 3096–3101 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Samulski, R.J., Chang, L.-S. & Shenk, T. Helper-free stocks of adeno-associated viruses: normal integration does not require viral gene expression. J. Virol. 63, 3022–3828 (1989).

    Google Scholar 

  20. Yahr, M.D. & Bergmann, K.J. (eds) Parkinson's disease. (Raven Press, New York, 1987).

    Google Scholar 

  21. Yatir, M.D. et al. Treatment of parkinsonism with levadopa. Arch. Neurol. 21, 343–354 (1969).

    Article  Google Scholar 

  22. Wolff, J.A. et al. Grafting fibroblasts genetically modified to produce L-dopa in a rat model of Parkinson's Disease. Proc. natn. Acad. Sci. U.S.A. 86, 9011–9014 (1989).

    Article  CAS  Google Scholar 

  23. Freed, W.J. et al. Resoration of dopaminergic function by grafting of fetal rat substantia nigrato the caudate nucleus: long-term behavioral, biochemical, and histochemical studies. Ann. Neurol. 8, 510–519 (1987).

    Article  Google Scholar 

  24. Horrelou, P. et al. In vivo release of dopa and dopamine from genetically engineered cells grafted to the denervated rat striatum. Neuron 5, 393–402 (1990).

    Article  Google Scholar 

  25. Jiao, S., Gurevich, V. & Wolff, J.A. Long term correction of rat model of Parkinson's Disease by gene therapy. Nature 262, 450–453 (1993).

    Article  Google Scholar 

  26. Jones, N.C. & Shenk, T.S. Isolation of deletion and substitution mutants of adenovirus type 5. Cell 13, 181–188 (1978).

    Article  CAS  PubMed  Google Scholar 

  27. Nuovo, G.J. et al. An improved technique for the in situ detection of DMA after polymerase chain reaction amplification. Am. J. Pathol. 139, 1239–1244, (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Nuovo, G.J. et al. Importance of different variables for enhancing in situ detection of PCR-amplified DNA. PCR Meth. Appl. 2, 305–312 (1993).

    Article  CAS  Google Scholar 

  29. Flotte, T.R. et al. Stable in vivo expression of the cystic fibrosistransmembrane conductance regulator with an adeno-associated virus vector. Proc. natn. Acad. Sci. U.S.A. 90, 10613–10617 (1993).

    Article  CAS  Google Scholar 

  30. O'Malley, K.L. et al. Isolation and characterization of the human tyrosine hydroxylase gene: Identification of 5′ alternative splice sites responsible for multiple mRNAs. Biochemistry 26, 6910–6914 (1987).

    Article  CAS  PubMed  Google Scholar 

  31. Dubach, M. et al. Primate neostriatal neurons containing tyrosine hydroxylase: immunohistochemical evidence. Neurosci. Lett. 75, 205–210 (1990).

    Article  Google Scholar 

  32. Hefti, F., Melamed, E. & Wurtman, R.J. Partial lesions of the dopaminergic nigrostriatal system in rat brain: Biochemical characterization. Brain Res. 195, 123–127 (1980).

    Article  CAS  PubMed  Google Scholar 

  33. Margraves, R. & Freed, W.J. Chronic intrastriatal dopamine infusions in rats with unilateral lesions of the substantia nigra. Life Sci. 40, 959–966 (1987).

    Article  Google Scholar 

  34. Freed, W.J. et al. Resoration of dopaminergic function by grafting of fetal rat substantia nigra to the caudate nucleus: long-term behavioral, biochemical, and histochemical studies. Ann. Neurol. 8, 510–519 (1987).

    Article  Google Scholar 

  35. Lebkowski, J.S., McNally, M.M., Okarma, T.B. & Lerch, L.B. Adeno-associated virus: a vector system for efficient introduction and integration of DNA into a variety of mammalian cell types. Molec. cell. Biol. 8, 3988–3996 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Scharfmann, R., Axelrod, J.H. & Verma, I.M. Long-term in vivo expression of retrovirus-mediated gene transfer in mouse fibroblast implants. Proc. natn. Acad. Sci. U.S.A. 88, 4626–4630 (1991).

    Article  CAS  Google Scholar 

  37. Samulski, R.J. et al. Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J. 10, 3941–3950 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McLaughlin, S.K. et al. Adeno-associated virus general transduction vectors: Analysis of proviral structures. J. Virol. 62, 1963–1973 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Poole, S. et al. Gene transfer into hematopoietic stem cells using AAV vectors: targeted integration into chromosome 19. Blood. (in the press).

  40. Graham, F.L. & van der Eb, A.J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52, 456–467 (1973).

    Article  CAS  PubMed  Google Scholar 

  41. Graham, F.L., Smiley, J., Russell, W.C. & Nairn, R. Characterization of a human cell line transformed by DNA from human adenovirus type 5. J. gen. Virol. 36, 59–74 (1977).

    Article  CAS  PubMed  Google Scholar 

  42. Paxinos, G. & Watson, C. The rat brain in stereotaxic coordinates. (Academic Press, Australia, 1982).

    Google Scholar 

  43. Perese, D.A., Ulman, J., Viola, J., Ewing, S.E. & Bankiewicz, K.S. A 6-hydroxydopamine-induced selective parkinsonian rat model. Brain Res. 494, 285–293 (1989).

    Article  CAS  PubMed  Google Scholar 

  44. During, M.J. et al. Biochemical and behavioral recovery in a rodent model of Parkinson's Disease following stereotactic implantation of dopamine-containing liposomes. Exp. Neurol. 115, 193–199 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplitt, M., Leone, P., Samulski, R. et al. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet 8, 148–154 (1994). https://doi.org/10.1038/ng1094-148

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1094-148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing