Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Better therapeutics through microarrays

Abstract

DNA microarrays are an integral part of the process for therapeutic discovery, optimization and clinical validation. At an early stage, investigators use arrays to prioritize a few genes as potential therapeutic targets on the basis of various criteria. Subsequently, gene expression analysis assists in drug discovery and toxicology by eliminating poor compounds and optimizing the selection of promising leads. Integral to this process is the use of sophisticated statistics, mathematics and bioinformatics to define statistically valid observations and to deduce complex patterns of phenotypes and biological pathways. In short, microarrays are redefining the drug discovery process by providing greater knowledge at each step and by illuminating the complex workings of biological systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The drug development 'pipeline'.

Katie Ris

Figure 2: Alterations in gene regulation in liver induced by the PPARα agonist Wy14643.
Figure 3: Drug-metabolizing genes are regulated by a network of receptors and transcription factors.

Katie Ris

Similar content being viewed by others

References

  1. Golub, T.R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article  CAS  Google Scholar 

  2. Pomeroy, S.L. et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415, 436–442 (2002).

    Article  CAS  Google Scholar 

  3. Gordon, G.J. et al. Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res. 62, 4963–4967 (2002).

    CAS  Google Scholar 

  4. Petricoin, E.F. et al. Medical applications of microarray technologies: a regulatory science perspective. Nature Genet. 32, 474–479 (2002).

    Article  CAS  Google Scholar 

  5. Fryer, R.M. et al. Global analysis of gene expression: methods, interpretation, and pitfalls. Exp. Nephrol. 10, 64–74 (2002).

    Article  CAS  Google Scholar 

  6. Gerhold, D. & Caskey, C.T. It's the genes! EST access to human genome content. BioEssays 18, 973–981 (1996).

    Article  CAS  Google Scholar 

  7. Tusher, V.G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA 98, 5116–5121 (2001).

    Article  CAS  Google Scholar 

  8. Ideker, T., Thorsson, V., Siegel, A.F. & Hood, L.E. Testing for differentially-expressed genes by maximum-likelihood analysis of microarray data. J. Comput. Biol. 7, 805–817 (2000).

    Article  CAS  Google Scholar 

  9. Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  Google Scholar 

  10. Efron, B. & Tibshirani, R. Empirical bayes methods and false discovery rates for microarrays. Genet. Epidemiol. 23, 70–86 (2002).

    Article  Google Scholar 

  11. Xu, H. & Raafat el-Gewely, M. p53-responsive genes and the potential for cancer diagnostics and therapeutics development. Biotechnol. Annu. Rev. 7, 131–164 (2001).

    Article  CAS  Google Scholar 

  12. Yang, Y.H. & Speed, T. Design issues for cDNA microarray experiments. Nature Rev. Genet. 3, 579–588 (2002).

    Article  CAS  Google Scholar 

  13. Quackenbush, J. Computational analysis of microarray data. Nature Rev. Genet. 2, 418–427 (2001).

    Article  CAS  Google Scholar 

  14. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  Google Scholar 

  15. Sarang, S.S. et al. Discovery of molecular mechanisms of neuroprotection using cell based bioassays and oligonucleotide arrays. Physiol. Genom. (2002); advance online publication 17 September 2002 (doi:10.1152/physiolgenomics. 00064.2002).

  16. Butte, A.J., Tamayo, P., Slonim, D., Golub, T.R. & Kohane, I.S. Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc. Natl Acad. Sci. USA 97, 12182–12186 (2000).

    Article  CAS  Google Scholar 

  17. Weinstein, J.N. et al. An information-intensive approach to the molecular pharmacology of cancer. Science 275, 343–349 (1997).

    Article  CAS  Google Scholar 

  18. Staunton, J.E. et al. Chemosensitivity prediction by transcriptional profiling. Proc. Natl Acad. Sci. USA 98, 10787–10792 (2001).

    Article  CAS  Google Scholar 

  19. Cho, Y.S. et al. Antisense DNAs as multisite genomic modulators identified by DNA microarray. Proc. Natl Acad. Sci. USA 98, 9819–9823 (2001).

    Article  CAS  Google Scholar 

  20. Hannon, G.J. RNA interference. Nature 418, 244–251 (2002).

    Article  CAS  Google Scholar 

  21. Fambrough, D., McClure, K., Kazlauskas, A. & Lander, E.S. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell 97, 727–741 (1999).

    Article  CAS  Google Scholar 

  22. Lee, S.B. et al. The Wilms tumor suppressor WT1 encodes a transcriptional activator of amphiregulin. Cell 98, 663–673 (1999).

    Article  CAS  Google Scholar 

  23. Welcsh, P.L. et al. BRCA1 transcriptionally regulates genes involved in breast tumorigenesis. Proc. Natl Acad. Sci. USA 99, 7560–7565 (2002).

    Article  CAS  Google Scholar 

  24. Staels, B. et al. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 98, 2088–2093 (1998).

    Article  CAS  Google Scholar 

  25. Hu, W.Y., Fukuda, N. & Kanmatsuse, K. Growth characteristics, angiotensin II generation, and microarray-determined gene expression in vascular smooth muscle cells from young spontaneously hypertensive rats. J. Hypertens. 20, 1323–1333 (2002).

    Article  CAS  Google Scholar 

  26. Karpen, S.J. Nuclear receptor regulation of hepatic function. J. Hepatol. 36, 832–850 (2002).

    Article  CAS  Google Scholar 

  27. Whitlock, J.P. Jr. & Denison, M.S. (ed.) Induction of Cytochrome P450 Enzymes that Metabolize Xenobiotics (Plenum, New York, 1995).

    Book  Google Scholar 

  28. Gerhold, D. et al. Monitoring expression of genes involved in drug metabolism and toxicology using DNA microarrays. Physiol. Genom. 5, 161–170 (2001).

    Article  CAS  Google Scholar 

  29. Rodrigues, A.D. & Rushmore, T.H. Cytochrome P450 pharmacogenetics in drug development: in vitro studies and clinical consequences. Curr. Drug Metab. 3, 289–309 (2002).

    Article  CAS  Google Scholar 

  30. Hansten, P.D. & Horn, J.R. The Top 100 Drug Interactions: A Guide to Patient Management (H&H Publications, Edmonds, WA, 2002).

    Google Scholar 

  31. Heimark, L.D., Gibaldi, M., Trager, W.F., O'Reilly, R.A. & Goulart, D.A. The mechanism of the warfarin–rifampin drug interaction in humans. Clin. Pharmacol. Ther. 42, 388–394 (1987).

    Article  CAS  Google Scholar 

  32. Baker, T.K. et al. Temporal gene expression analysis of monolayer cultured rat hepatocytes. Chem. Res. Toxicol. 14, 1218–1231 (2001).

    Article  CAS  Google Scholar 

  33. Waring, J.F. et al. Clustering of hepatotoxins based on mechanism of toxicity using gene expression profiles. Toxicol. Appl. Pharmacol. 175, 28–42 (2001).

    Article  CAS  Google Scholar 

  34. Scherf, U. et al. A gene expression database for the molecular pharmacology of cancer. Nature Genet. 24, 236–244 (2000).

    Article  CAS  Google Scholar 

  35. Hamadeh, H.K. et al. Prediction of compound signature using high density gene expression profiling. Toxicol. Sci. 67, 232–240 (2002).

    Article  CAS  Google Scholar 

  36. Thomas, R.S. et al. Identification of toxicologically predictive gene sets using cDNA microarrays. Mol. Pharmacol. 60, 1189–1194 (2001).

    Article  CAS  Google Scholar 

  37. Burczynski, M.E. et al. Toxicogenomics-based discrimination of toxic mechanism in HepG2 human hepatoma cells. Toxicol. Sci. 58, 399–415 (2000).

    Article  CAS  Google Scholar 

  38. Pennie, W.D., Woodyatt, N.J., Aldridge, T.C. & Orphanides, G. Application of genomics to the definition of the molecular basis for toxicity. Toxicol. Lett. 120, 353–358 (2001).

    Article  CAS  Google Scholar 

  39. Ueda, A. et al. Diverse roles of the nuclear orphan receptor CAR in regulating hepatic genes in response to phenobarbital. Mol. Pharmacol. 61, 1–6 (2002).

    Article  CAS  Google Scholar 

  40. Wei, P., Zhang, J., Dowhan, D.H., Han, Y. & Moore, D.D. Specific and overlapping functions of the nuclear hormone receptors CAR and PXR in xenobiotic response. Pharmacogenom. J. 2, 117–126 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the many people who have assisted us in understanding the power and utility of using microarrays. The work is supported by the National Institute of Diabetes & Digestive & Kidney Diseases Biotechnology Center Consortium (S.R.G. and R.V.J.). S.R.G. is currently on a leave of absence at US Genomics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. Gullans.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerhold, D., Jensen, R. & Gullans, S. Better therapeutics through microarrays. Nat Genet 32 (Suppl 4), 547–552 (2002). https://doi.org/10.1038/ng1042

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1042

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing