Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A transactivation-deficient mouse model provides insights into Trp53 regulation and function

A Corrigendum to this article was published on 01 February 2005

Abstract

The gene Trp53 is among the most frequently mutated and studied genes in human cancer, but the mechanisms by which it suppresses tumour formation remain unclear. We generated mice with an allele encoding changes at Leu25 and Trp26, known to be essential for transcriptional transactivation and Mdm2 binding, to enable analyses of Trp53 structure and function in vivo. The mutant Trp53 was abundant, its level was not affected by DNA damage and it bound DNA constitutively; however, it showed defects in cell-cycle regulation and apoptosis. Both mutant and Trp53-null mouse embryonic fibroblasts (MEFs) were readily transformed by oncogenes, and the corresponding mice were prone to tumours. We conclude that the determining pathway for Trp53 tumour-suppressor function in mice requires the transactivation domain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeting of the Trp53QS mutation to the Trp53 genomic locus.
Figure 2: The Trp53QS protein does not bind Mdm2 and is expressed at high levels.
Figure 3: Trp53QS binds DNA constitutively and its subcellular localization is not affected by DNA damage.
Figure 4: Trp53QS exhibits defective transactivation and cell-cycle checkpoints.
Figure 5: The thymocytes in mice containing Trp53QS is defective in apoptosis, and Trp53QS/QS MEFs are transformed by cooperating oncogenes.

Similar content being viewed by others

References

  1. Ko, L.J. & Prives, C. p53: puzzle and paradigm. Genes Dev. 10, 1054–1072 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Giaccia, A.J. & Kastan, M.B. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 12, 2973–2983 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Attardi, L.D., Lowe, S.W., Brugarolas, J. & Jacks, T. Transcriptional activation by p53, but not induction of the p21 gene, is essential for oncogene-mediated apoptosis. EMBO J. 15, 3693–3701 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Haupt, Y., Rowan, S., Shaulian, E., Vousden, K.H. & Oren, M. Induction of apoptosis in HeLa cells by trans-activation-deficient p53. Genes Dev. 9, 2170–2183 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Sabbatini, P., Lin, J., Levine, A.J. & White, E. Essential role for p53-mediated transcription in E1A-induced apoptosis. Genes Dev. 9, 2184–2192 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Walker, K.K. & Levine, A.J. Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc. Natl Acad. Sci. USA 93, 15335–15340 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee, S., Elenbaas, B., Levine, A. & Griffith, J. p53 and its 14 kDa C-terminal domain recognize primary DNA damage in the form of insertion/deletion mismatches. Cell 81, 1013–1020 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Mummenbrauer, T. et al. p53 Protein exhibits 3′-to-5′ exonuclease activity. Cell 85, 1089–1099 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Sturzbecher, H.W., Donzelmann, B., Henning, W., Knippschild, U. & Buchhop, S. p53 is linked directly to homologous recombination processes via RAD51/RecA protein interaction. EMBO J. 15, 1992–2002 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lin, J., Chen, J., Elenbaas, B. & Levine, A.J. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 8, 1235–1246 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. O'Gorman, S., Dagenais, N.A., Qian, M. & Marchuk, Y. Protamine-Cre recombinase transgenes efficiently recombine target sequences in the male germ line of mice, but not in embryonic stem cells. Proc. Natl Acad. Sci. USA 94, 14602–14607 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sah, V.P. et al. A subset of p53-deficient embryos exhibit exencephaly. Nature Genet. 10, 175–180 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Kussie, P.H. et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948–953 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Kubbutat, M.H., Jones, S.N. & Vousden, K.H. Regulation of p53 stability by Mdm2. Nature 387, 299–303 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Juven-Gershon, T. & Oren, M. Mdm2: the ups and downs. Mol. Med. 5, 71–83 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McLure, K.G. & Lee, P.W. How p53 binds DNA as a tetramer. EMBO J. 17, 3342–3350 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zauberman, A., Barak, Y., Ragimov, N., Levy, N. & Oren, M. Sequence-specific DNA binding by p53: identification of target sites and lack of binding to p53-MDM2 complexes. EMBO J. 12, 2799–2808 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kapoor, M., Hamm, R., Yan, W., Taya, Y. & Lozano, G. Cooperative phosphorylation at multiple sites is required to activate p53 in response to UV radiation. Oncogene 19, 358–364 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Bottger, A. et al. Molecular characterization of the hdm2-p53 interaction. J. Mol. Biol. 269, 744–756 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Ljungman, M., Zhang, F., Chen, F., Rainbow, A.J. & McKay, B.C. Inhibition of RNA polymerase II as a trigger for the p53 response. Oncogene 18, 583–592 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Roth, J., Dobbelstein, M., Freedman, D.A., Shenk, T. & Levine, A.J. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J. 17, 554–564 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Freedman, D.A. & Levine, A.J. Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol. Cell. Biol. 18, 7288–7293 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stommel, J.M. et al. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 18, 1660–1672 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. de Stanchina, E. et al. E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev. 12, 2434–2442 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zindy, F. et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12, 2424–2433 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Khan, S.K., Moritsugu, J. & Wahl, G.M. Differential requirement for p19ARF in the p53-dependent arrest induced by DNA damage, microtubule disruption and ribonucleotide depletion. Proc. Natl Acad. Sci. USA 97, 3266–3271 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sherr, C.J. Tumor surveillance via the ARF-p53 pathway. Genes Dev. 12, 2984–2991 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Kastan, M.B., Onyekwere, O., Sidransky, D., Vogelstein, B. & Craig, R.W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51, 6304–6311 (1991).

    CAS  PubMed  Google Scholar 

  30. Linke, S.P., Clarkin, K.C., Di Leonardo, A., Tsou, A. & Wahl, G.M. A reversible p53-dependent G0/G1 cell cycle arrest induced by ribonucleotide depletion in the absence of detectable DNA damage. Genes Dev. 10, 934–947 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Kern, S.E. et al. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256, 827–830 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Lowe, S.W., Schmitt, E.M., Smith, S.W., Osborne, B.A. & Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Clarke, A.R. et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849–852 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Wahl, G.M., Linke, S.P., Paulson, T.G. & Huang, L.C. Maintaining genetic stability through TP53 mediated checkpoint control. Cancer Surv. 29, 183–219 (1997).

    CAS  PubMed  Google Scholar 

  35. Ford, J.M. & Hanawalt, P.C. Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in global DNA repair but exhibit normal transcription-coupled repair and enhanced UV resistance. Proc. Natl Acad. Sci. USA 92, 8876–8880 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tanaka, H. et al. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 404, 42–49 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, X.W. et al. The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway. Genes Dev. 10, 1219–1232 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Tybulewicz, V.L., Crawford, C.E., Jackson, P.K., Bronson, R.T. & Mulligan, R.C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65, 1153–1163 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Jimenez, G.S. et al. DNA-dependent protein kinase is not required for the p53-dependent response to DNA damage. Nature 400, 81–83 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Barlow for help with isolation of mouse thymocytes and advice on measuring apoptosis and tumorigenicity; and M. Vogt and M. Haas for helpful discussions regarding transformation assays. This work was supported by a postdoctoral fellowship from the NIH (G.S.J.), an NSF Graduate Fellowship (J.M.S.) and an ACS International Cancer Research Fellowship from the UICC (M.N.), and by grants from the NIH (G.M.W. and S.O.) and the G. Harold and Leila Y. Mathers Charitable Foundation (G.M.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey M. Wahl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jimenez, G., Nister, M., Stommel, J. et al. A transactivation-deficient mouse model provides insights into Trp53 regulation and function. Nat Genet 26, 37–43 (2000). https://doi.org/10.1038/79152

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/79152

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing