Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNA ligase I is required for fetal liver erythropoiesis but is not essential for mammalian cell viability

Abstract

Four distinct DMA ligase activities (I-IV) have been identified within mammalian cells1–3. Evidence has indicated that DNA ligase I is central to DMA replication4–7, as well as being involved in DNA repair processes8,9. A patient with altered DNA ligase I displayed a phenotype similar to Bloom's syndrome, being immunodeficient, growth retarded and predisposed to cancer10. Fibroblasts isolated from this patient (46BR) exhibited abnormal lagging strand synthesis11,12 and repair deficiency13–15. It has been reported that DNA ligase I is essential for cell viability16, but here we show that cells lacking DNA ligase I are in fact viable. Using gene targeting in embryonic stem (ES) cells, we have produced DNA ligase l-deficient mice. Embryos develop normally to mid-term, when haematopoiesis usually switches to the fetal liver. Thereupon acute anaemia develops, despite the presence of erythroid-committed progenitor cells in the liver. Thus DNA ligase I is required for normal development, but is not essential for replication. Hence a previously unsuspected redundancy must exist between mammalian DNA ligases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barnes, D.E. et al. Human DNA ligase I cDNA: cloning and functional expression in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 87, 6679–6683 (1990).

    Article  CAS  Google Scholar 

  2. Tomkinson, A.E., Roberts, E., Daly, G., Totty, N.F. & Lindahl, T. Three distinct DNA ligases in mammalian cells. J. Biol. Chem. 266, 21728–21735 (1991).

    CAS  PubMed  Google Scholar 

  3. Wei, Y.-F. et al. Molecular cloning and expression of human cDNAs encoding a novel DNA ligase IV and DNA ligase III, an enzyme active in DNA repair and recombination. Mol. Cell. Biol. 15, 3206–3216 (1995).

    Article  CAS  Google Scholar 

  4. Wu, W. et al. A17S multiprotein form of murine cell DNA polymerase mediates polyomavirus DNA replication in vitro. J. Biol. Chem. 54, 32–46 (1994).

    CAS  Google Scholar 

  5. Applegren, N. et al. Further characterization of the human cell multiprotein DNA replication complex. J. Biol. Chem. 59, 91–107 (1995).

    CAS  Google Scholar 

  6. Turchi, J.J., Huang, L., Murante, R.S., Kim, Y. & Bambara, R.A. Enzymatic completion of mammalian lagging-strand DNA replication. Proc. Natl. Acad. Sci. USA 91, 9803–9807 (1994).

    Article  CAS  Google Scholar 

  7. Waga, S., Bauer, G. & Stillman, B. Reconstitution of complete SV40 DNA replication with purified replication factors. J. Biol. Chem. 269, 10923–10934 (1994).

    CAS  PubMed  Google Scholar 

  8. Montecucco, A. et al. Late induction of human DNA ligase I after UV-C irradiation. Nud. Acids Res. 23, 962–966 (1995).

    Article  CAS  Google Scholar 

  9. Aboussekhra, A. et al. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80, 859–868 (1995).

    Article  CAS  Google Scholar 

  10. Webster, A.D.B., Barnes, D.E., Arlett, C.F., Lehmann, A.R. & Lindahl, T. Growth retardation and immunodeficiency in a patient with mutations in the DNA ligase I gene. Lancet 339, 1508–1509 (1992).

    Article  CAS  Google Scholar 

  11. Lönn, U., Lönn, S., Nylen, U. and Winblad, G. Altered formation of DNA replication intermediates in human 46BR fibroblast cells hypersensitive to 3-aminobenzamide. Cardnogenesis 10, 981–985 (1989).

    Article  Google Scholar 

  12. Prigent, C., Satoh, M.S., Daly, G., Barnes, D.E. & Lindahl, T. Aberrant DNA repair and DNA replication due to an inherited enzymatic defect in human DNA ligase I. Mol. Cell. Biol. 14, 310–317 (1994).

    Article  CAS  Google Scholar 

  13. Teo, I.A., Arlett, C.F., Harcourt, S.A., Priestley, A. & Broughton, B.C. Multiple hypersensitivity to mutagens in a cell strain (46BR) derived from a patient with immune-deficiencies. Mut. Res. 107, 371–386 (1983).

    Article  CAS  Google Scholar 

  14. Henderson, L.M., Arlett, C.F., Harcourt, S.A., Lehmann, A.R. & Broughton, B.C. Cells from an immunodeficient patient (46BR) with a defect in DNA ligation are hypomutable but hypersensitive to the induction of sister chromatid exchanges. Proc. Nail. Acad. Sci. USA 82, 2044–2048 (1985).

    Article  CAS  Google Scholar 

  15. Lehmann, A.R. et al. Relation between the human fibroblast strain 46BR and cell lines representative of Bloom's syndrome. Cancer Res. 48, 6343–6347 (1988).

    CAS  PubMed  Google Scholar 

  16. Petrini, J.H.J., Xiao, Y. & Weaver, D.T. DNA ligase I mediates essential functions in mammalian cells. Mol. Cell. Biol. 15, 4303–4308 (1995).

    Article  CAS  Google Scholar 

  17. Barnes, D.E., Tomkinson, A.E., Lehmann, A.R., Webster, A.D.B. & Lindahl, T. Mutations in the DNA ligase I gene in an individual with immunodeficiencies and cellular hypersensitivity to DNA-damaging agents. Cell 69, 495–504 (1992).

    Article  CAS  Google Scholar 

  18. Stacey, A. et al. Use of double-replacement targeting to replace the murine α-lactalbumin gene with its human counterpart in embryonic stem cells and mice. Mol. Cell. Biol. 14, 1009–1015 (1994).

    Article  CAS  Google Scholar 

  19. Selfridge, J., Pow, A.M., McWhir, J., Magin, T. & Melton, D.W. Gene targeting using a mouse HPRT minigene/HPRT-deficient embryonic stem cell system: Inactivation of the mouseERCC-1 gene.. Som. Cellmolec. Genet. 18, 325–336 (1992).

    Article  CAS  Google Scholar 

  20. Metcalf, D. & Moore, M.A.S. Haemopoietic Cells (North-Holland, Amsterdam, 1971)

  21. Montecucco, A. et al. DNA ligase I gene expression during differentiation and cell proliferation. Nucl. Acids Res. 20, 6209–6214 (1992).

    Article  CAS  Google Scholar 

  22. Chan, J.Y.-H. & Becker, F.F. DNA ligase activities during hepatocarcinogenesis induced by N-2-acetylaminofluorene. Carcinogenesis 6, 1275–1277 (1985).

    Article  CAS  Google Scholar 

  23. Gariboldi, M. et al. Genetic mapping and expression analysis of the murine DNA ligase I gene. Mol. Cardnogenesis 14, 71–74 (1995).

    Article  CAS  Google Scholar 

  24. McWhir, J., Selfridge, J., Harrison, D.J., Squires, S. & Melton, D.W. Mice with DNA repair gene (ERCC-1) deficiency have elevated levels of p53, liver nuclear abnormalities and die before weaning. Nature Genet. 5, 217–224 (1993).

    Article  CAS  Google Scholar 

  25. Ellis, N.A. et al. The Bloom's syndrome gene product is homologous to RecQ helicases. Cell 83, 655–666 (1995).

    Article  CAS  Google Scholar 

  26. Jessop, J.K. & Melton, D.W. Comparison between cDNA clones encoding murine DNA ligase I. Gene. 160, 307–308 (1995).

    Article  CAS  Google Scholar 

  27. Thompson, S., Clarke, A.R., Pow, A.M., Hooper, M.L. & Melton, D.W. Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell 56, 313–321 (1989).

    Article  CAS  Google Scholar 

  28. Tomkinson, A.E., Lasko, D.D., Daly, G. & Lindahl, T. Mammalian DNA ligases Catalytic domain and size of DNA ligase I.. J. Biol. Chem. 265, 12611–12617 (1990).

    CAS  PubMed  Google Scholar 

  29. Lorimore, S.A., Pragnell, I.B., Eckman, L. & Wright, E.G. Synergistic interactions allow colony formation in vitro by murine haemopoietic stem cells. Leuk. Res. 14, 481–489 (1990).

    Article  CAS  Google Scholar 

  30. Freshney, M.G. in Culture of Haematopoietic Cells (eds Freshney, R.I., Pragnell, I.B. and Freshney, M.G.) 265–268 (Wiley-Liss, New York, 1994).

    Google Scholar 

  31. Noguiez, P., Barnes, D.E., Mohrenweiser, H.W. & Lindahl, T. Structure of the human DNA ligase I gene. Nucl. Acids Res. 20, 3845–3850 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bentley, D., Selfridge, J., Millar, J. et al. DNA ligase I is required for fetal liver erythropoiesis but is not essential for mammalian cell viability. Nat Genet 13, 489–491 (1996). https://doi.org/10.1038/ng0896-489

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0896-489

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing