Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Endothelial apoptosis in Braf-deficient mice

Abstract

Tyrosine kinase growth factor receptors and Ras/Raf/MEK/MAPK signalling have been implicated in the suppression1–3 as well as augmentation of programmed cell death4. In addition, a Ras-independent role for Raf as a suppressor of programmed cell death has been suggested by the recent finding that Craf1 interacts with members of the Bcl-2 family at mitochondrial membranes5. However, genetic studies of C elegans6 and Drosophila7, as well as the targeted mutagenesis of the murine Araf gene8, have failed to support such a role. Here we show that mice with a targeted disruption in the Braf gene die of vascular defects during mid-gestation. Braf−/− embryos, unlike Araf−/−8 or Craf1−/− embryos (L.W. et al., unpublished), show an increased number of endothelial precursor cells, dramatically enlarged blood vessels and apoptotic death of differentiated endothelial cells. These results establish Braf as a critical signalling factor in the formation of the vascular system and provide the first genetic evidence for an essential role of a Raf gene in the regulation of programmed cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Troppmair, J., Cleveland, J.L., Askew, D.S. & Rapp, U.R. v-Raf/v-Myc synergism in abrogation of IL-3 dependence: v-Raf suppresses apoptosis. Curr. Top. Microbiol. Immunol. 182, 453–460 (1992).

    CAS  PubMed  Google Scholar 

  2. Arends, M.J., McGregor, A.M., Toft, N.J., Brown, E.J. & Wyllie, A.M. Susceptibility to apoptosis is differentially regulated by c-myc and mutated Ha-ras oncogenes and is associated with endonuclease availability.Br. J. Cancer 68, 1127–1133 (1993).

    Article  CAS  Google Scholar 

  3. Wyllie, A.M. et al. Rodent fibroblast tumours expressing human myc and ras genes: growth, metastasis and endogenous oncogene expression. Br. J. Cancer 56, 251–259 (1987).

    Article  CAS  Google Scholar 

  4. Tanaka, N. et al. Cellular commitment to oncogene-induced transformation or apoptosis is dependent on the transcription factor IRF-1. Cell 77, 829–839 (1994).

    Article  CAS  Google Scholar 

  5. Wang, H.-G., Rapp, U.R. & Reed, J.D. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 87, 629–638 (1996).

    Article  CAS  Google Scholar 

  6. Man, M., Golden, A., Man, Y. & Sternberg, P.W. C elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. Nature 363, 133–140 (1993).

    Article  Google Scholar 

  7. Lu, X., Melnick, M.B., Hsu, J.C. & Perrimon, N. Genetic and molecular analyses of mutations involved in Drosophila raf signal transduction. EMBO J. 13, 2592–2599 (1994).

    Article  CAS  Google Scholar 

  8. Pritchard, C.A., Bolin, L., Slattery, R., Murray, R. & McMahon, M. Post-natal lethality and neurological and gastrointestinal defects in mice with targeted disruption of the A-Raf protein kinase gene. Curr. Biol. 6, 614–617 (1996).

    Article  CAS  Google Scholar 

  9. Vojtek, A.B., Hollenberg, S.M. & Cooper, J.A., Ras interacts directly with the serine/threonine kinase Raf. Cell 74, 205–214 (1993).

    Article  CAS  Google Scholar 

  10. Barnier, J.V., Papin, C., Eychene, A., Lecoq, O. & Calothy, G. The mouse B-raf gene encodes multiple protein isoforms with tissue-specific expression. J. Biol. Chem. 270, 23381–23389 (1995).

    Article  CAS  Google Scholar 

  11. Noden, D.M. Origins and assembly of avian embryonic blood vessels. Ann. N.Y. Acad. Sci. 588, 236–249 (1990).

    Article  CAS  Google Scholar 

  12. Risau, W. Differentiation of endothelium. FASEB J. 9, 926–933 (1995).

    Article  CAS  Google Scholar 

  13. Pardanaud, L., Yassine, F. & Dieterlen-Lievre, F. Relationship between vasculo-genesis, angiogenesis and haemopoiesis during avian ontogeny. Development 105, 473–85 (1989).

    CAS  Google Scholar 

  14. Puri, M.C., Rossant, J., Alitalo, K., Bernstein, A. & Partanen, J. The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. EMBO J. 14, 5884–5891 (1995).

    Article  CAS  Google Scholar 

  15. Modak, S.P. & Bollum, F.J. Detection and measurement of single-strand breaks in nuclear DNA in fixed lens sections. Exp. Cell Res. 75, 307–313 (1972).

    Article  CAS  Google Scholar 

  16. Sanders, E.J. & Wride, M.A. Programmed cell death in development. Int. Rev. Cytol. 163, 105–173 (1995).

    Article  CAS  Google Scholar 

  17. Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but asusceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  Google Scholar 

  18. Suri, C. et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during angiogenesis. Cell 87, 1171–1180 (1996).

    Article  CAS  Google Scholar 

  19. Dumont, D.J. et al. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev. 8, 1897–1909 (1994).

    Article  CAS  Google Scholar 

  20. Brooks, P.C. et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79, 1157–1164 (1994).

    Article  CAS  Google Scholar 

  21. Pawson, T. Regulation of the Ras signalling pathway by protein-tyrosine kinases. Biochem. Soc. Trans. 22, 455–460 (1994).

    Article  CAS  Google Scholar 

  22. Reuter, C.W., Catling, A.D., Jelinek, T. & Weber, M.J. Biochemical analysis of MEK activation in NIH3T3 f ibroblasts. Identification of B-Raf and other activators. J. Biol. Chem. 270, 7644–7655 (1995).

    Article  CAS  Google Scholar 

  23. Jaiswal, R.K., Moodie, S.A., Wolfman, A. & Landreth, G.E. The mitogen-activated protein kinase cascade is activated by B-Raf in response to nerve growth factor through interaction with p21ras. Mol. Cell. Biol. 14, 6944–6953 (1994).

    Article  CAS  Google Scholar 

  24. Pritchard, C.A., Samuels, M.L., Bosch, E. & McMahon, M. Conditionally oncogenic forms of the A-Raf and B-Raf protein kinases display different biological and biochemical properties in NIH 3T3 cells. Mol. Cell. Biol. 15, 6430–6442 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wojnowski, L., Zimmer, A., Beck, T. et al. Endothelial apoptosis in Braf-deficient mice. Nat Genet 16, 293–297 (1997). https://doi.org/10.1038/ng0797-293

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0797-293

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing