Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hypogonadism and obesity in mice with a targeted deletion of the Nhlh2 gene

Abstract

The family of basic helix-loop-helix (bHLH) genes comprises transcription factors involved in many aspects of growth and development. We have previously described two bHLH transcription factors, Nhlh1 and Nhlh2 (originally named NSCL1 and NSCL2)1–3. The nucleotide and predicted protein sequences of Nhlh1 and Nhlh2 are homologous within their bHLH domain where there are only three conservative amino acid differences2,3. During murine embryogenesis, Nhlh1 and Nhlh2 share an overlapping but distinct pattern of expression in the developing nervous system1,2. To improve our understanding of the role of these genes during neurogenesis, we have generated mice containing targeted deletions of both genes and here describe our results for Nhlh2. Loss of Nhlh2 results in a disruption of the hypothalamic-pituitary axis in mice. Male Nhlh2−/ − mice are microphallic, hypogonadal and infertile with alterations in circulating gonadotropins, a defect in spermatogenesis and a loss of instinctual male sexual behaviour. Female Nhlh2−/ − mice reared alone are hypogonadal, but when reared in the presence of males, their ovaries and uteri develop normally and they are fertile. Both male and female homozygotes exhibit progressive adult-onset obesity. Nhlh2 is expressed in the ventral-medial and lateral hypothalamus, Rathke's pouch and in the anterior lobe of the adult pituitary. Our results support a role for Nhlh2 in the onset of puberty and the regulation of body weight metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Begley, C.G. et al. Molecular characterization of NSCL, a gene encoding a helix-loop-helix protein expressed in the developing nervous system. Proc. Natl. Acad. Sci. USA 89, 38–42 (1992).

    Article  PubMed  CAS  Google Scholar 

  2. Gobel, V., Lipkowitz, S., Kozak, C.A. & Kirsch, I.R. NSCL-2: A basic domain helix-loop-helix gene expressed in early neurogenesis. Cell Growth Differ. 3, 143–148 (1992).

    PubMed  CAS  Google Scholar 

  3. Lipkowitz, S. et al. A comparative structural characterization of the human IMSCL-1 and NSCL-2 genes. J. Biol. Chem. 267, 21065–21071 (1992).

    PubMed  CAS  Google Scholar 

  4. Rugh, R. The Mouse. Its reproduction and development 1–43 (Oxford University Press, Oxford, 1990).

    Google Scholar 

  5. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–32 (1994).

    Article  CAS  Google Scholar 

  6. Tartaglia, L.A. et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 83, 1263–1271 (1995).

    Article  PubMed  CAS  Google Scholar 

  7. Noben-Trauth, K., Naggert, J.K., North, M.A. & Nishina, P.M. A candidate gene for the mouse mutation, tubby. Nature 380, 534–538 (1996).

    Article  PubMed  CAS  Google Scholar 

  8. Matochik, J.A., Sipos, M.L., Nyby, J.G. & Barfield, R.J. Intracranial androgenic activation of male-typical behaviors in house mice: motivation verses performance. Behav. Brain Res. 60, 141–149 (1994).

    Article  PubMed  CAS  Google Scholar 

  9. McGill, T.E. Sexual behavior in three inbred strains of mice. Behavior 19, 341–350 (1961).

    Article  Google Scholar 

  10. Crowley, W.R. et al. Neuroendocrine control of human reproduction in the male. Recent Prog. Horm. Res. 47, 27–67 (1991).

    PubMed  CAS  Google Scholar 

  11. Culler, M.D. & Negro-Vilar, A. Evidence that pulsatile follicle-stimulating hormone secretion is independent of endogenous luteinizing hormone-releasing hormone. Endocrinology 118, 609–612 (1986).

    Article  PubMed  CAS  Google Scholar 

  12. Lee, S.L. et al. Luteinizing hormone deficiency and female infertility in mice lacking the transcription factor NGF1-A (Egr-1). Science 273, 1219–1221 (1996).

    Article  PubMed  CAS  Google Scholar 

  13. Cattanach, B.M., Iddon, C.A., Charlton, H.M., Chiappa, S.A. & Fink, G. Gonadotrophin-releasing hormone deficiency in a mutant mouse with hypogonadism. Nature 269, 338–340 (1977).

    Article  PubMed  CAS  Google Scholar 

  14. Halpin, D.M., Charlton, H.M. & Faddy, M.J. Effects of gonadotrophin deficiency on follicular development in hypogonadal (hpg) mice. J. Reprod. Fertil. 78, 119–125 (1986).

    Article  PubMed  CAS  Google Scholar 

  15. Bronson, F.H. & Macmillan, B. in Pheromones and Reproduction in Mammals. 175–196 (Academic Press, New York, 1983).

    Book  Google Scholar 

  16. Garcia de Yebenes, E., Li, S., Fournier, A., St-Pierre, S. & Pelletier, G. Regulation of proopriomelanocortin gene expression by neuropeptide Y in the rat arcuate nucleus. Brain Res. 674, 112–116 (1995).

    Article  PubMed  CAS  Google Scholar 

  17. Japon, M.A., Rubinstein, M. & Low, M.J. In situ hybridization analysis of anterior pituitary hormone gene expression during fetal mouse development. J. Histochem. Cytochem 42, 1117–1125 (1994).

    Article  PubMed  CAS  Google Scholar 

  18. Wray, S., Grant, P. & Gainer, H. Evidence that cells expressing luteinizing hormone-releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode. Proc. Natl. Acad. Sci. USA 86, 8132–8136 (1989).

    Article  PubMed  CAS  Google Scholar 

  19. Charlton, H.M. & Wood, M.J. Animal models for brain and pituitary gonadal disturbances. Prog. Brain Res. 93, 321–332 (1992).

    Article  PubMed  CAS  Google Scholar 

  20. Parkingson, W.L. & Weingarten, H.P. Dissociative analysis of ventromedial hypothalamic obesity syndrome. Am. J. Physiol. 259, R829–R835 (1990).

    Google Scholar 

  21. Bray, G.A., York, D.A. & Fisler, J.S. Experimental obesity: a homeostatic failure due to a defective stimulation of the sympathetic nervous system. Vitam. Horm. 45, 1–125 (1989).

    Article  PubMed  CAS  Google Scholar 

  22. Tybulewicz, V.I., Crawford, C.E., Jackson, P.K., Bronson, R.T. & Mulligan, R.C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65, 1153–1163 (1991).

    Article  PubMed  CAS  Google Scholar 

  23. Li, E., Bestor, T.H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

    Article  CAS  Google Scholar 

  24. Love, P.E., Tremblay, M.L. & Westphal, H. Targeting of the T-cell receptor zeta-chain in embryonic stem cells: strategies for generating multiple mutations in a single gene. Proc. Natl. Acad. Sci. USA 89, 9929–9933 (1992).

    Article  PubMed  CAS  Google Scholar 

  25. Laird, P.W. et al. Simplified mammalian DNA isolation procedure. Nucl. Acids Res. 19. 4293–4295 (1991).

    Article  PubMed  CAS  Google Scholar 

  26. Sambrook, J., Fritsch, E.F. & Maniatis, T., A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989).

    Google Scholar 

  27. Takeuchi, T. et al. Genes encoding pancreatic polypeptide and neuropeptide Y are on human chromosomes 17 and 7. J. Clin. Invest. 77, 1038–1041 (1986).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Oates, E. & Herbert, E. 5′ sequence of porcine and rat pro-opiomelanocortin mRNA: one porcine and two rat forms. J. Biol. Chem. 259, 7421–7425 (1984).

    PubMed  CAS  Google Scholar 

  29. Rehbein, M. et al. The neurohypophseal hormones vasopressin and oxytocin: Precursor structure, synthesis and regulation. Biol. Chem. Hoppe-Seyler 367, 695–704 (1986).

    Article  PubMed  CAS  Google Scholar 

  30. Kleyn, P.W. et al. Identification and characterization of the mouse obesity gene tubby: A member of a novel gene family. Cell 85, 281–290 (1996).

    Article  PubMed  CAS  Google Scholar 

  31. Lopez, F.J., Merchenthaler, I., Ching, M., Wisniewski, M.G. & Negro-Vilar, A. Galanin: a hypothalamic-hypophysiotropic hormone modulating reproductive functions. Proc. Natl. Acad. Sci. USA 88, 4508–4512 (1991).

    Article  PubMed  CAS  Google Scholar 

  32. Ikeda, M., Taga, M., Sakakibara, H., Minaguchi, H. & Vonderhaar, B.K. Detection of messenger RNA for gonadotropin-releasing hormone (GnRH) but not for GnRH receptors in mouse mammary glands. Biochem. Biophys. Res. Comm. 207, 800–806 (1995).

    Article  PubMed  CAS  Google Scholar 

  33. Wray, S., Gahwiler, B.H. & Gainer, H. Slice cultures of LHRH neurons in the presence and absence of brainstem and pituitary. Peptides 9, 1151–1175 (1988).

    Article  PubMed  CAS  Google Scholar 

  34. Kovacic, N. & Parlow, A.F. Alterations in serum FSH-LH ratios in relation to the estrous cycle, pseudopregnancy, and gonadectomy in the mouse. Endocrinology 91, 910–915 (1972).

    Article  PubMed  CAS  Google Scholar 

  35. Hogan, B., Beddington, R., Costantini, F. & Lacy, E. Manipulating the mouse embryo: A laboratory manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1994).

    Google Scholar 

  36. Conlon, R.A. & Rossant, J. Exogenous retinoic acid rapidly induces anterior ectopic expression of murine Hox-2 genes in vivo. Development 116, 357–368 (1992).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Good, D., Porter, F., Mahon, K. et al. Hypogonadism and obesity in mice with a targeted deletion of the Nhlh2 gene. Nat Genet 15, 397–401 (1997). https://doi.org/10.1038/ng0497-397

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0497-397

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing