Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

RNA processing and the evolution of eukaryotes

Abstract

In eukaryotes, RNA processing events, including alternative splicing and RNA editing, can generate many different messages from a single gene. As a consequence, the RNA pool, which we refer to here as the 'ribotype', has a different information content from the genotype and can vary as circumstances change. The outcome of a single RNA processing event often regulates the outcome of another, giving rise to networks that affect the composition and expression of a particular ribotype. Successful ribotypes are determined by natural selection, and can be incorporated into the genome over time by reverse transcription. Eukaryotic evolution is therefore influenced by the alternate ways in which RNAs are processed and the continual interplay between RNA and DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Due to extensive processing of pre-mRNA, different ribotypes can be assembled from a genome, each determining a unique phenotype on which natural selection can act.
Figure 2: Sex determination in Drosophila involves a splicing cascade, whereby one RNA processing event regulates another.
Figure 3: Double-stranded RNA adenosine deaminase converts a glutamine codon in a glutamic receptor subunit pre-mRNA to an arginine codon.

Similar content being viewed by others

References

  1. Crick, F. Central dogma of molecular biology. Nature 227, 561–563 (1970).

    Article  CAS  Google Scholar 

  2. Wang, Y.-C., Selvakumar, M. & Helfman, D. Alternative pre-mRNA splicing. in Eukaryotic mRNA Processing (ed. Krainer, A.R.) 242–278 (Oxford University Press, New York, 1997).

    Google Scholar 

  3. Bass, B.L. RNA editing and hypermutation by adenosine deamination. Trends Biochem. Sci. 22, 157–162 (1997).

    Article  CAS  Google Scholar 

  4. Poole, A.M., Jeffares, D.C. & Penny, D. The path from the RNA world. J. Mol. Evol. 46, 1–17 (1998).

    Article  CAS  Google Scholar 

  5. Ricchetti, M. & Buc, H. E. coli DNA polymerase I as a reverse transcriptase. EMBO J. 12, 387–396 (1993).

    Article  CAS  Google Scholar 

  6. Jones, M.D. & Foulkes, N.S. Reverse transcription of mRNA by Thermus aquaticus DNA polymerase. Nucleic Acids Res. 17, 8387–8388 (1989).

    Article  CAS  Google Scholar 

  7. Allaudeen, H.S. DNA and RNA polymerases of mammalian cells and tumor viruses. Pharmacol. Ther. 2, 447–448 (1978).

    CAS  Google Scholar 

  8. Baker, B.S. Sex in flies: the splice of life. Nature 340, 521–524 (1989).

    Article  CAS  Google Scholar 

  9. Keyes, L.N., Cline, T.W. & Schedl, P. The primary sex determination signal of Drosophila acts at the level of transcription. Cell 68, 933–943 (1992).

    Article  CAS  Google Scholar 

  10. Kren, B.T. & Steer, C.J. Posttranscriptional regulation of gene expression in liver regeneration: role of mRNA stability. FASEB J. 10, 559–573 (1996).

    Article  CAS  Google Scholar 

  11. Ross, J. mRNA stability in mammalian cells. Microbiol. Rev. 59, 423–450 (1995).

    CAS  Google Scholar 

  12. Lee, R., Feinbaum, R. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 643–654 (1993).

    Article  Google Scholar 

  13. Ha, I., Wrightman, B. & Ruvkun, G. Post-transcriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    Article  Google Scholar 

  14. Ha, I., Wrightman, B. & Ruvkun, G. A bulged lin-4/lin-14 RNA duplex is sufficient for Caenorhabditis elegans lin-14 temporal gradient formation. Genes Dev. 10, 3041–3050 (1996).

    Article  CAS  Google Scholar 

  15. Dubnau, J. & Struhl, G. RNA recognition and translational regulation by a homeodomain protein. Nature 379, 694–699 (1996).

    Article  CAS  Google Scholar 

  16. Rivera-Pomar, R., Niessing, D., Schmidt-Ott, U., Gehring, W.J. & Jackle, H. RNA binding and translational repression by bicoid. Nature 379, 746–749 (1996).

    Article  CAS  Google Scholar 

  17. Bashaw, G.J. & Baker, B.S. The regulation of the Drosophila msl-2 gene reveals a function for sex-lethal in translational control. Cell 89, 789–798 (1997).

    Article  CAS  Google Scholar 

  18. Gebauer, F., Merendino, L., Hentze, M.W. & Valcarcel, J. The Drosophila splicing regulator sex-lethal directly inhibits translation of male-specific-lethal 2 mRNA. RNA 4, 142–150 (1998).

    CAS  Google Scholar 

  19. Simpson, L. & Thiemann, O.H. mRNA editing. in Eukaryotic mRNA Processing (ed. Krainer, A.R.) 335–376 (Oxford University Press, New York, 1997).

    Google Scholar 

  20. Tollervey, D. & Kiss, T. Function and synthesis of small nucleolar RNAs. Curr. Opin. Cell Biol. 9, 337–342 (1997).

    Article  CAS  Google Scholar 

  21. Bachellerie, J.-P. et al. Antisense snoRNAs: a family of nucleolar RNAs with long complementarities to rRNA. Trends Biochem. Sci. 20, 261–264 (1995).

    Article  CAS  Google Scholar 

  22. Eichler, D.C. & Craig, N. Processing of eukaryotic ribosomal RNA. Prog. Nucleic Acid Res. Mol. Biol. 49, 197–239 (1994).

    Article  CAS  Google Scholar 

  23. Sommer, B., Kohler, M., Sprengel, R. & Seeburg, P.H. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67, 11–19 (1991).

    Article  CAS  Google Scholar 

  24. Hume, R.I., Dingledine, R. & Heinemann, S.F. Identification of a site in the glutamate receptor subunits that controls calcium permeability. Science 253, 1028–1031 (1991).

    Article  CAS  Google Scholar 

  25. Verdoorn, T.A., Burnashev, N., Monyer, H., Seeburg, P.H. & Sakmann, B. Structural determinants of ion flow through recombinant glutamate receptor channels. Science 252, 1715–1718 (1991).

    Article  CAS  Google Scholar 

  26. Higuchi, M. et al. RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell 75, 1361–1370 (1993).

    Article  CAS  Google Scholar 

  27. Kohler, M., Burnashev, N., Sakmann, B. & Seeburg, P.H. Determinants of Ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing. Neuron 10, 491–500 (1993).

    Article  CAS  Google Scholar 

  28. Lomeli, H. et al. Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266, 1709–1713 (1994).

    Article  CAS  Google Scholar 

  29. Herb, A., Higuchi, M., Sprengel, R. & Seeburg, P.H. Q/R site editing in kainate receptor GluR5 and GluR6 pre-mRNAs requires distant intronic sequences. Proc. Natl Acad. Sci. USA 93, 1875–1880 (1996).

    Article  CAS  Google Scholar 

  30. Egebjerg, J., Kukekov, V. & Heinemann, S.F. Intron sequence directs RNA editing of the glutamate receptor GluR2 coding sequence. Proc. Natl Acad. Sci. USA 91, 10270–10274 (1994).

    Article  CAS  Google Scholar 

  31. Burns, C.N. et al. Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387, 303–308 (1997).

    Article  CAS  Google Scholar 

  32. Ma, J., Qian, R., Rausa, F.M. III & Colley, K.J. Two naturally occurring α2,6-Sialyltransferase forms with a single amino acid change in the catalytic domain differ in their catalytic activity and proteolytic processing. J. Biol. Chem. 272, 672–679 (1997).

    Article  CAS  Google Scholar 

  33. Patton, D.E., Silva, T. & Bezanilla, F. RNA editing generates a diverse array of transcripts encoding squid Kv2 K+ channels with altered functional properties. Neuron 19, 711–722 (1997).

    Article  CAS  Google Scholar 

  34. Bass, B.L. RNA editing: new uses for old players in the RNA world. in The RNA World (eds Gesteland, R.F. & Atkins, J.F.) 383–418 (Cold Spring Harbor Laboratory Press, Plainview, 1993).

    Google Scholar 

  35. Herbert, A.G. RNA editing, introns and evolution. Trends Genet. 12, 6–9 (1996).

    Article  CAS  Google Scholar 

  36. Polson, A.G., Bass, B.L. & Casey, J.L. RNA editing of hepatitis δ virus antigenome by dsRNA-adenosine deaminase. Nature 380, 454–456 (1996).

    Article  CAS  Google Scholar 

  37. Petschek, J.P., Scheckelhoff, M.R., Mermer, M.J. & Vaughn, J.C. RNA editing and alternative splicing generate mRNA transcript diversity from the Drosophila 4f-rnp locus. Gene 204, 267–276 (1997).

    Article  CAS  Google Scholar 

  38. Lai, M.M.C. The molecular biology of hepatitis δ virus. Annu. Rev. Biochem. 64, 259–286 (1995).

    Article  CAS  Google Scholar 

  39. Dougherty, W.G. & Parks, T.D. Transgenes and gene suppression: telling us something new? Curr. Opin. Cell Biol. 7, 399–405 (1995).

    Article  CAS  Google Scholar 

  40. Schiebel, W., Haas, B., Marinkovic, S., Klanner, A. & Sanger, H.L. RNA-directed RNA polymerase from tomato leaves. J. Biol. Chem. 263, 11858–11867 (1993).

    Google Scholar 

  41. Tabari, H., Grishok, A. & Mello, C.C. RNAi in C. elegans: soaking in the genome sequence. Science 282, 430–431 (1998).

    Article  Google Scholar 

  42. Smit, A.F.A. The origin of interspersed repeats in the human genome. Curr. Opin. Genet. Dev. 6, 743–748 (1996).

    Article  CAS  Google Scholar 

  43. Weiner, A.M., Deninger, P.L. & Efstratiadis, A. Nonviral retroposons: genes, pseudogenes and transposable elements generated by the reverse flow of genetic information. Annu. Rev. Biochem. 55, 631–661 (1986).

    Article  CAS  Google Scholar 

  44. Vanin, E.F. Processed psuedogenes: characteristics and evolution. Annu. Rev. Genet. 19, 253–272 (1985).

    Article  CAS  Google Scholar 

  45. Moore, J.K. & Haber, J.E. Capture of retrotransposon DNA at the sites of chromosomal double-stranded breaks. Nature 383, 644–646 (1996).

    Article  Google Scholar 

  46. Teng, S.-C., Kim, B. & Gabriel, A. Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks. Nature 383, 641–644 (1996).

    Article  Google Scholar 

  47. Eickbush, T.H. Telomerase and retrotransposons: which came first? Science 277, 911–912 (1997).

    Article  CAS  Google Scholar 

  48. Taghian, D.G. & Nickoloff, J.A. Chromosomal double-strand breaks induce gene conversion at high frequency in mammalian cells. Mol. Cell. Biol. 17, 6386–6393 (1997).

    Article  CAS  Google Scholar 

  49. Liang, F., Han, M., Romanienko, P.J. & Jasin, M. Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc. Natl Acad. Sci. USA 95, 5172–5177 (1998).

    Article  CAS  Google Scholar 

  50. Britten, R.J. Mobile elements inserted in the distant past have taken on important functions. Gene 205, 177–182 (1997).

    Article  CAS  Google Scholar 

  51. Murnane, J.P. & Morales, J.F. Use of a mammalian interspersed repetitive (MIR) element in the coding and processing sequences of mammalian genes. Nucleic Acids Res. 23, 2837–2839 (1995).

    Article  CAS  Google Scholar 

  52. Wallace, M.R. et al. A de novo Alu insertion results in neurofibromatosis type I. Nature 353, 864–866 (1991).

    Article  CAS  Google Scholar 

  53. Miki, Y., Katagiri, M.Y., Kasumui, F., Yoshimoto, T. & Nakamura, Y. Mutation analysis in the BRCA2 gene in primary breast cancers. Nature Genet. 13, 245–247 (1996).

    Article  CAS  Google Scholar 

  54. Kidwell, M.G. & Lisch, D. Transposable elements as sources of variation in animals and plants. Proc. Natl Acad. Sci. USA 94, 7704–7711 (1997).

    Article  CAS  Google Scholar 

  55. Cramer, P., Pesce, C.P., Baralle, C.G. & Kornblihtt, A.R. Functional association between promoter structure and transcript alternative splicing. Proc. Natl Acad. Sci. USA 94, 11456–11460 (1997).

    Article  CAS  Google Scholar 

  56. Branchiforte, D. & Martin, S.L. Developmental and cell type specificity of LINE-1 expression in mouse testis: implications for transposition. Mol. Cell. Biol. 14, 2584–2592 (1994).

    Article  Google Scholar 

  57. Lewin, B. Gene Expression: Eukaryotic Genomes 728–760 (Wiley, New York, 1980).

    Google Scholar 

Download references

Acknowledgements

We thank K. Lowenhaupt and A. Varshavsky for a critical reading of the manuscript. This work was supported by grants from the National Institutes of Health and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Herbert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herbert, A., Rich, A. RNA processing and the evolution of eukaryotes. Nat Genet 21, 265–269 (1999). https://doi.org/10.1038/6780

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/6780

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing