Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ectopic expression of thyrotropin releasing hormone (TRH) receptors in liver modulates organ function to regulate blood glucose by TRH

Abstract

Maintenance of blood glucose by the liver is normally initiated by extracellular regulatory molecules such as glucagon and vasopressin triggering specific hepatocyte receptors to activate the cAMP or phosphoinositide signal transduction pathways, respectively. We now show that the normal ligand-receptor regulators of blood glucose in the liver can be bypassed using an adenovirus vector expressing the mouse pituitary thyrotropin releasing hormone receptor (TRHR) cDNA ectopically in rat liver in vivo. The ectopically expressed TRHR links to the phosphoinositide pathway, providing a means to regulate liver function with TRH, an extracellular ligand that does not normally affect hepatic function. Administration of TRH to these animals activates the phosphoinositide pathway, resulting in a sustained rise in blood glucose. It should be possible to use this general strategy to modulate the differentiated functions of target organs in a wide variety of pathologic states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gammeltoft, S. & Kahn, R.C. Hormone signaling via membrane receptors. In Endocrinology. (eds DeGroot, LJ. et al.) 17–65 (W.B. Saunders Company, Philadelphia, 1995).

    Google Scholar 

  2. Gershengorn, M.C. & Perlman, J.H. Second messenger signaling pathways: phosphatidyl inositol and calcium. In Endocrinology. (eds DeGroot, LJ. et al.) 66–76 (W.B. Saunders Company, Philadelphia, 1995).

    Google Scholar 

  3. Habener, J.F. Cyclic AMP second messenger signaling pathway. In Endocrinology (eds DeGroot, L.J. et al.) 77–92 (W.B. Saunders Com pany, Philadelphia, 1995).

    Google Scholar 

  4. Walsh, D.A. & Van Patten, S.M. Multiple pathway signal transduction by the cAMP-dependent protein kinase. FASEB J. 8, 1227–1236 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Exton, J.H. Mechanisms of Hormonal Regulation of Hepatic Glucose Metabolism. Diabetes Metab. Rev. 3, 163–183 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Raymond, J.R. Hereditary and acquired defects in signaling through the hormone-receptor-G protein complex. Am. J. Physiol. 266, F163–74 (1994).

    CAS  PubMed  Google Scholar 

  7. Wilkin, T.J. Receptor autoimmunity in endocrine disorders. N. Engl. J. Med. 323, 1318–1324 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Tsunoda, Y., Ca2+ signaling and crosstalk in stimulus secretion coupling. Biochim. Biophys. Acta. 1154, 105–156 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Birnbaumer, L. et al. Roles of g proteins in coupling of receptors to ionic channels and other effector systems. Crit. Rev. Biochem. Mol. Biol. 25, 225–244 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Gershengorn, M.C., Heinflink, M., Nussenzveig, D.R., Hinkle, P.M. & Falck-Pedersen, E. Thyrotropin-releasing hormone (TRH) receptor number determines the size of the TRH-responsive phosphoinositide pool. J. Biol. Chem. 269, 6779–6783 (1994).

    CAS  PubMed  Google Scholar 

  11. Bringhurst, F.R. et al. Cloned, stably expressed parathyroid hormone (pth)/pth-related peptide receptors activate multiple messenger signals and biological responses in Ilc-pk1 kidney cells. Endocrinology 132, 2090–2098 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Kaneko, K.J., Gelinas, C. & Gorski, J. Activation of the silent progesterone receptor gene by ectopic expression of estrogen receptors in a rat fibroblast cell line. Biochemistry 32, 8348–8359 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Gershengorn, M.C. Thyrotropin-releasing hormone receptor: cloning and regulation of its expression. Recent Prog. Horm. Res. 48, 341–363 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Scanlon, M.F. & Hall, R. Thyrotropin-releasing hormone: basic and clinical aspects. In Endocrinology. (eds DeGroot, L.J. et al.) 192–207 (W.B. Saunders, Philadelphia, 1995).

    Google Scholar 

  15. Heinflink, M., Nussenzveig, D.R., Friedman, A.M. & Gershengorn, M.C. Thyrotropin-releasing hormone receptor activation does not elevate intracellular cyclic adenosine 3',5'-monophosphate in cells expressing high levels of receptors. J. Clin. Endocrinol. Metab. 79, 650–652 (1994).

    CAS  PubMed  Google Scholar 

  16. Vale, W., Rivier, J. & Burgus, R. Synthetic TRF (Thyrotropin Releasing Factor) Ana logues: II. pGlu-N3imMe-His-Pro-NH2: A Synthetic Analogue with Specific Activity Greater then that of TRF. Endocrinology 89, 1485–1488 (1971).

    Article  CAS  PubMed  Google Scholar 

  17. Herz, J. & Gerard, R.D. Adenovirus-mediated transfer of low density lipoprotein receptor gene acutely accelerates cholesterol in normal mice. Proc. Natl. Acad. Sci. USA 90, 2812–2816 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pilkis, S.J. & Granner, O.K., Physiology of the Regulation of Hepatic Gluco neogenesis and Glycolysis. Annu. Rev. Physiol. 54, 885–909 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Young, A.A., Cooper, G.J.S., Carlo, R., Rink, T.J. & Wang, M.-W. Response to intrave nous injections of amylin and glucagon in fasted, fed, and hypoglycemic rats. Am. J. Physiol. 264, E943–E950 (1993).

    CAS  PubMed  Google Scholar 

  20. Jaffe, H.A. et al. Adenovirus-mediated in vivo gene transfer and expression in normal rat liver. Nature Genet. 1, 372–378 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Li, Q., Kay, M.A., Finegold, M., Startford-Perriaudet, L.D. & Woo, S.L.C. Assessment of recombinant adenoviral vectors for hepatic gene therapy. Hum. Gene Ther. 4, 403–409 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Milano, C.A. et al. Enhanced myocardial function in transgenic mice overexpressing the β2-adrenergic receptor. Science 264, 582–586 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Milano, C.A. et al. Myocardial expression of a constitutively active alpha 1 b-adrenergic receptor in transgenic mice induces cardiac hypertrophy. Proc. Natl. Acad. Sci. USA 91, 10109–10113 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bond, R.A. et al. Physiological effects of inverse agonists in transgenic mice with myo cardial overexpression of the beta 2-adrenoceptor. Nature. 374, 272–276 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Spencer, D.M., Wandless, T.J., Schreiber, S.L. & Crabtree, G.R., Transduction with Synthetic Ligands. Science 262, 1019–1024 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Grossman, M. et al. Successful ex vivo gene therapy directed to liver in a patient with familial hypercholesterolaemia. Nature Genet. 6, 335–341 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Kozarsky, K.F., McKinley, D.R., Austin, L.L., Raper, S.E., Stratford-Perricaudet, L.D. & Wilson, J.M. In vivo correction of low density lipoprotein receptor deficiency in the watanabe heritable hyperlipidemic rabbit with recombinant adenoviruses. J. Biol. Chem. 269, 13695–13702 (1994).

    CAS  PubMed  Google Scholar 

  28. Hems, D.A., Whitton, P.O. & Ma, G.Y. Metabolic actions of vasopressin, glucagon and adrenalin in the intact rat. Biochim. Biophys. Acta. 411, 155–164 (1975).

    Article  CAS  PubMed  Google Scholar 

  29. Buwalda, B., Nyakas, C., Koolhaas, J.M. & Bohus, B. Neuroendocrine and behavioral effects of vasopressin in resting and mild stress conditions. Physiol. Behav. 54, 947–953 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Lefkowitz, R.J. & Premont, R.T. Diseased G protein-coupled receptors. J. Clin. Invest. 92, 2089 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Spiegel, A.M., Weinstein, L.S. & Shenker, A. Abnormalities in g protein-coupled signal transduction pathways in human disease. J. Clin. Invest. 92, 1119–1125 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Naparstek, Y. & Plotz, P.H. The role of autoantibodies in autoimmune disease. Annu. Rev. Immunol. 11, 79–104 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Rogers, S.W. et al. Autoantibodies to glutamate receptor glur3 in rasmussen's encephali tis. Science 265, 648–651 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Falck-Pedersen, E., Heinflink, M., Alvira, M., Nussenzveig, D.R. & Gershengorn, M.C. Expression of thyrotropin-releasing hormone receptors by adenovirus-mediated gene transfer reveals that thyrotropin releasing hormone desensitization is cell specific. Mol. Pharmacol. 45, 684–689 (1994).

    CAS  PubMed  Google Scholar 

  35. Hersh, J., Crystal, R.G. & Bewig, B. Modulation of gene expression after replication-deficient, recombinant adenovirus-mediated gene transfer by the product of a second adenovirus vector. Gene Therapy 2, 124–131 (1995).

    CAS  Google Scholar 

  36. Rosenfeld, M.A. et al. Adenovirus-mediated transfer of a recombinant alpha 1 - antitryp sin gene to the lung epithelium in vivo. Science 252, 431–434 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Rosenfeld, M.A. et al. In vivo transfer of the human cystic fibrosis transmembrane con ductance regulator gene to the airway epithelium. Cell 68, 143–155 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Gershengorn, M.C. Bihormonal regulation of the thyrotropin-releasing hormone receptor in mouse pituitary thyrotropic tumor cells in culture. J. Clin. Invest 62, 937–943 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Imai, A. & Gershengorn, M.C. Measurement of lipid turnover in response to thyrotro pin-releasing hormone. Meth. Enzymol. 141, 100–101 (1987).

    Article  CAS  Google Scholar 

  40. Mitruka, B.M., Rawnsley, H.M. In Clinical Biochemical and Hematological Reference Values in Normal Experimental Animals. 117–246 (Masson, New York, 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolff, G., Mastrangeli, A., Heinflink, M. et al. Ectopic expression of thyrotropin releasing hormone (TRH) receptors in liver modulates organ function to regulate blood glucose by TRH. Nat Genet 12, 274–279 (1996). https://doi.org/10.1038/ng0396-274

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0396-274

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing