Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The minisatellite in the diabetes susceptibility locus IDDM2 regulates insulin transcription

Abstract

Genetic susceptibility to insulin–dependent diabetes mellitus (IDDM) is inherited as a polygenic trait. One of the loci implicated in IDDM is a polymorphic minisatellite 5′ of the human insulin (INS) gene on chromosome 11. This insulin–linked polymorphic region (ILPR) is composed of tandemly repeated sequences, which fall into three size classes: IDDM is strongly associated with short ILPR alleles. We now show that the ILPR is capable of transducing a transcriptional signal in pancreatic β–cells, with a long ILPR possessing greater activity than a short ILPR. The ILPR contains numerous high–affinity binding sites for the transcription factor Pur–1, and transcriptional activation by Pur–1 is modulated by naturally occurring sequences in the ILPR. Our results demonstrate a possible function for this unique minisatellite, which may have implications for type 1 diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tautz, D. Notes on the definition and nomenclature of tandemly repetitive DNA sequences. EXS 87, 21–28 (1993).

    Google Scholar 

  2. Collick, A. & Dunn, M.G. Minisatellite binding protein Msbp-1 isasequence-spedfic single-stranded DMA-binding protein. Nucleic Acids Res. 19, 6399–6404 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wahls, W.P., Swenson, G. & Moore, P.D. Two hyper variable minisatellite DNA binding proteins. Nucleic Acids Res. 19, 3269–3274 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yamazaki, H., Nomoto, S., Mishima, Y. & Komlnami, R. A 35-kDa protein binding to a cytosine-rich strand of hypervariable minisatellite DNA. J. Biol. Chem. 267, 12311–12316 (1992).

    CAS  PubMed  Google Scholar 

  5. Trepicchio, W.L. & Krontiris, T.G. Members of the rel/NF-kB family of transcripttonal regulatory proteins bind the HRAS1 minisatellite DNA sequence. Nucl. Adds Res. 20, 2427–2434 (1992).

    Article  CAS  Google Scholar 

  6. Wahls, W.P., Wallace, L.J. & Moore, P.D. Hypervariable minisatellite DNA is a hotspot for homologous recombination in human cells. Cell 60, 95–103 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Maddox, J. Triplet repeat genes raise questions. Nature 368, 685 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Davies, K. Triplet repeats on the rise. Nature 384, 88 (1993).

    Article  Google Scholar 

  9. Bell, G.I., Selby, M. & Putter, W.J. The highly polymorphic region near the human insulin gene Is composed of simple tandemly repeating sequences. Nature 296, 31–35 (1982).

    Article  Google Scholar 

  10. Bell, G.I., Karam, J.H. & Rutter, W.J. Polymorphic DNA region adjacent to the 5′ end of the human insulin gene. Pmc. rain. Acad. Sci. U.S.A. 78, 5759–5763 (1981).

    Article  CAS  Google Scholar 

  11. Selno, S., Bell, G.I. & Li, W.H. Sequences of primate insulin genes support the hypothesis of a slower rate of molecular evolution in humans and apes than in monkeys. Molec. Biol. Evol. 9, 193–203 (1992).

    Google Scholar 

  12. Owerbach, D. & Aagaard, L. Analysis of a 1963-bp polymorphic region flanking the human Insulin gene. Gene 32, 475–479 (1984).

    Article  CAS  PubMed  Google Scholar 

  13. Rotwein, P., Yokoyama, S., Didier, D.K. & Chirgwin, J.M. Genetic analysis of the hypervariable region flanking the human insulin gene. Am. J. hum. Genet. 39, 291–299 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Walker, M.D., Edlund, T., Boulet, A.M. & Rutter, W.J. Cell-specific expression controlled by the 5′ flanking regions of the insulin and chymotrypsin genes. Nature 308, 557–581 (1983).

    Article  Google Scholar 

  15. Bell, G.I., Horita, S. & Karam, J.H. A polymorphic locus near the human Insulin gene is associated with Insulin-dependent diabetes mellitus. Diabetes 33, 176–183 (1984).

    Article  CAS  PubMed  Google Scholar 

  16. Juller, C. et al. Insulin-IGF2 region on chromosome 11p encodes a gene Implicated in HLA-DR4-dependent diabetes susceptibility. Nature 354, 155–159 (1991).

    Article  Google Scholar 

  17. Bain, S.C. et al. Insulin gene region-encoded susceptibility to type I diabetes Is not restricted to HLA-DR4-posttive individuals. Nature Genet. 2, 212–215 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Owerbach, D. & Gabbay, K.H. Localization of a type I diabetes susceptibility locus to the variable tandem repeat region flanking the insulin gene. Diabetes 42, 1708–1714 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Lucassen, A.M. et al. Susceptibility to Insulin dependent diabetes mellltus maps to a 4. 1 kb segment of DNA spanning the insulin gene and associated VNTR. Nature Genet. 4, 305–310 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Davies, J.L. et al. A genome-wide search for human type 1 diabetes susceptibility genes. Nature 371, 130–136 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Thomson, G. et at Genetic heterogeneity, modes of inheritance and risk estimates for a joint study of Caucasians with Insulin-dependent diabetes mellttus. Am. J. hum. Genet. 43, 799–816 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Platz, P. et al. HLA-D and HLA-DR antigens in genetic analysis of insulin-dependent diabetes mellitus. Oiabetologia 21, 108–115 (1981).

    CAS  Google Scholar 

  23. Owerbach, D. et al. HLA-D region B chain DNA endonuclease fragments differ between HLA-DR identical healthy and insulin-dependent diabetic individuals. Nature 303, 815–817 (1983).

    Article  CAS  PubMed  Google Scholar 

  24. Todd, J.A., Bell, J.I. & McDevttt, H.O. HLA-DQB gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 329, 599–604 (1987).

    Article  CAS  PubMed  Google Scholar 

  25. Owerbach, D., Gunn, S., Ty, G., Wible, L. & Gabbay, K.H. Oligonucleotlde probes for HLA-DQA and HLA-DQB genes define susceptibility to type 1 (insulin-dependent) diabetes mellitus. Diabetotogia 31, 751–757 (1988).

    Article  CAS  Google Scholar 

  26. Sheehy, M.J. et al. A diabetes-susceptibility HLA haplotype Is best defined by a combination of HLA-DR and HLA-DQ alleles. J. clln. Invest. 83, 830–835 (1989).

    Article  CAS  Google Scholar 

  27. Owerbach, D., Gunn, S. & Gabbay, K.H. Primary association of HLA-DQw6 with type I diabetes mellltus In DR4 patients. Diabetes 38, 942–845 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. Madsen, O. et al. Islet amyloid polypeptide and insulin expression are controlled differently in primary and transformed islet ceils. Motec. Endocrin. 5, 143–148 (1991).

    CAS  Google Scholar 

  29. Kennedy, G.C. & Rutter, W.J., Pur-1, a zinc-finger protein that binds to purlne-rich sequences, transactivates an insulin promoter In heterologous cells. Proc. natn. Acad. Scl. U.S.A. 89, 11498–11502 (1992).

    Article  CAS  Google Scholar 

  30. Kennedy, G.C. & Rutter, W.J. Characterization of a cDNA encoding the insulin gene GAGA-bindcng factor, Pur-1. Biochem. Soc. Trans. 21, 178–180 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Singh, H., LeBowitz, J.H., Baldwin, A.S. & Sharp, P.A. Molecular cloning of an enhancer binding protein: Isolation by screening of an expression library with a recognition site DNA. Cell 52, 415–423 (1988).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, Y.-H., Amlrhaeri, S., Kang, S., Wells, R.D. & Griffith, J.D. Preferential nucleosome assembly at DNA triplet repeats from the myotonic dystrophy gene. Science 285, 669–671 (1994).

    Article  Google Scholar 

  33. Hammond-Kosack, M.C.U., Dobrinskl, B., Lurz, R., Docherty, K. & Kilpatrick, M. The human insulin gene linked polymorphic region exhibits an altered DNA structure. Nucl. Acids Res. 20, 231–236 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hammond-Kosack, M.C.U. & Docherty, K. A consensus repeat sequence from the human insulin gene linked polymorphic region adopts multiple quadriplex DNA structures In vitro. FEBS Letts. 301, 79–82 (1992b).

    Article  CAS  Google Scholar 

  35. Hammond-Kosack, M.C.U., Kilpatrick, M.W. & Docherty, K. The human Insulin gene-linked polymorphic region adopts a G-quartet structure in chromatln assembled in vitro. J. motec. Endocrin. 10, 121–126 (1993).

    Article  CAS  Google Scholar 

  36. Lander, E.S. & Schork, N.J. Genetic dissection of complex traits Science 285, 2037–2048 (1994).

    Article  Google Scholar 

  37. German, M.S., Moss, L.G. & Rutter, W.J. Regulation of insulin gene expression by glucose and calcium in transfected primary Islet cultures. J. biol. Chem. 265, 22063–22066 (1990).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kennedy, G., German, M. & Rutter, W. The minisatellite in the diabetes susceptibility locus IDDM2 regulates insulin transcription. Nat Genet 9, 293–298 (1995). https://doi.org/10.1038/ng0395-293

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0395-293

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing