Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transplantation to the rat brain of human neural progenitors that were genetically modified using adenoviruses

Abstract

Transplantations for neurological disorders are limited by the supply of human fetal tissue. To generate larger numbers of cells of appropriate phenotype, we investigated whether human neural progenitors expanded in vitro could be modified with recombinant adenoviruses. Strong expression of β–galactosidase was obtained in vitro. Two or three weeks after transplantation of engineered cells to the rat brain, we observed a small percentage of surviving neuroblasts strongly expressing β–galactosidase in four out of 13 rats. Thus human precursor cells that have been genetically modified using adenoviruses are a promising tool for ex vivo gene therapy of neurodegenerative diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lindvall, O. et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease. Science 247, 574–577 (1990).

    Article  CAS  Google Scholar 

  2. Lindvall, O. et al Evidence for long-tern survival and function of dopaminergic grafts In progressive Parkinson's disease. Ann. Neurol. 35, 172–160 (1994).

    Article  CAS  Google Scholar 

  3. Björklund, A. Better cells for brain repair. Nature 362, 414–415 (1993).

    Article  Google Scholar 

  4. Groves, A.K. et al. Repair of demyelinated lesions by transplantation of purified 0-2A progenitors. Nature 362, 453–455 (1993).

    Article  CAS  Google Scholar 

  5. Reynolds, B.A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).

    Article  CAS  Google Scholar 

  6. Cattaneo, E. & McKay, R. Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature 347, 762–765 (1990).

    Article  CAS  Google Scholar 

  7. Ray, J., Peterson, D.A., Schinstine, M. & Gage, F.H., Proliferation, differentiation, and long term culture of primary hippocampal neurons. Proc. natn. Acad. Sci. U.S.A. 90, 3602–3606 (1993).

    Article  CAS  Google Scholar 

  8. Renfranz, P.J., Cunningham, M.G. & McKay, R.D.G. Region-specific differentiation of the hippocampal stem cell line HIB5 upon implantation into the developing mammalian brain. Cell 66, 713–729 (1991).

    Article  CAS  Google Scholar 

  9. Snyder, E.Y. et al. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68, 33–51 (1992).

    Article  CAS  Google Scholar 

  10. Luskin, M.B., Pearlman, A.L. & Sanes, J.R. Cell lineage In the cerebral cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus. Neuron 1, 635–647 (1988).

    Article  CAS  Google Scholar 

  11. Horellou, P., Lundberg, C., Robert, J.-J., Björklund, A. & Mallet, J. Gene transfer in situ and in cells for intracerebral transplantation. Semin. Neurosci. 5, 453–459 (1993).

    Article  Google Scholar 

  12. Le Gal La Salle, G. et al. An adenovirus vector for gene transfer into neurons and glia in the brain. Science 259, 988–990 (1993).

    Article  CAS  Google Scholar 

  13. Davidson, B.L., Allen, E.D., Kozarsky, K.F., Wilson, J.M. & Roessler, B.J. A model system for in vivo gene transfer into the central nervous system using an adenoviral vector. Nature Genet. 3, 219–223 (1993).

    Article  CAS  Google Scholar 

  14. Akli, S. et al. Transfer of a foreign gene into the brain using adenovirus vectors. Nature Genet. 3, 224–228 (1993).

    Article  CAS  Google Scholar 

  15. Bajocchi, G., Feldman, S.H., Crystal, R.G. & Mastrangeli, A., in vivo gene transfer to ependymal cells in the central nervous system using recombinant adenovirus vectors. Nature Genet. 3, 229–234 (1993).

    CAS  Google Scholar 

  16. Frederiksen, K. & McKay, R. Proliferation and differentiation of rat neuroepithelial precursor cells in vivo. J. Neurosci. 8, 1144–1151 (1988).

    Article  CAS  Google Scholar 

  17. Stagaard, M. & Mollgard, K. The developing neuroepithelium in human embryonic and fetal brain studied with nestin-immunocytochemistry. Anat. Embryol. 180, 17–28 (1989).

    Article  CAS  Google Scholar 

  18. Buc-Caron, M.H. Neuroepithelial progenitor cells explanted from human fetal brain proliferate and differentiate in vitro. Neurobiol. Dis. (In the press).

  19. Stratford-Perricaudet, L.D., Levrero, M., Chase, J.F., Perricaudet, M. & Briand, P. Widespread long-term gene transfer to mouse skeletal muscle and heart. J. clin. Invest. 90, 626–630 (1992).

    Article  CAS  Google Scholar 

  20. C. et al. Adenoviral vector as a gene delivery system into cultured rat neuronal and glial cells. Eur. J. Neurosci. 5, 1287–1291 (1993).

  21. Lal, B., Cahan, M.A., Couraud, P.-O., Goldstein, G.W. & Laterra, J. Development of endogenous β-galactosidase and auto fluorescence in rat brain microvessels: implications for cell tracking and gene transfer studies. J. Histochem. Cytochem. 42, 953–956 (1994).

    Article  CAS  Google Scholar 

  22. Shimohama, S. et al. Grafting genetically modified cells Into the rat brain: Characteristics of E. coli β-galactosidase as a reporter gene. Molec. Brain Res. 5, 271–278 (1989).

    Article  CAS  Google Scholar 

  23. Kato, K., Suzuki, F., Watanabe, T., Semba, R. & Keino, H. Developmental profile of three enolase Isoenzymes in rat brain determination from one-cell embryo to adult brain. Neurochem. Int. 6, 51–54 (1984).

    Article  Google Scholar 

  24. Denoulet, P., Edde, B. & Gros, F. Differential expression of several neurospecific b-tubuiin mRNAs in the mouse brain during development. Gene 50, 289–297 (1986).

    Article  CAS  Google Scholar 

  25. Tucker, R.P. The roles of microtubule-associated proteins in brain morphogenesis: a review. Brain Res. Rev. 15, 101–120 (1990).

    Article  CAS  Google Scholar 

  26. Tohyama, T., Lee, V.M.-Y., Rorke, L.B. & Trojanowski, J.Q. Molecular milestones that signal axonal maturation and the commitment of human spinal cord precursor cells to the neuronal or glial phenotype in development. J. comp. Neurol. 310, 285–299 (1991).

    Article  CAS  Google Scholar 

  27. Raff, M.C. Glial cell diversification in the rat optic nerve. Science 243, 1450–1454 (1989).

    Article  CAS  Google Scholar 

  28. Brundin, P. et al. Human fetal dopamine neurons grafted in a rat model of Parkinson's disease: immunological aspects, spontaneous and drug-induced behavior, and dopamine release. Exp. Brain Res. 70, 192–208 (1988).

    CAS  PubMed  Google Scholar 

  29. Kaplitt, M.G. et al. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nature Genet 8, 148–153 (1994).

    Article  CAS  Google Scholar 

  30. During, M.J., Naegele, J.R., O'Malley, K.L. & Geller, A.I. Long-term behavioral recovery in parkinsonian rats by an HSV vector expressing tyrosine hydroxylase. Science 266, 1399–1403 (1994).

    Article  CAS  Google Scholar 

  31. Horellou, P. et al. Direct intracerebral gene transfer of an adenoviral vector expressing tyrosine hydroxylase in a rat model of Parkinson's disease. Neuro Report 6, 49–63 (1994).

    CAS  Google Scholar 

  32. Fisher, L.J., Jinnah, H.A., Kale, L.C., Higgins, G.A. & Gage, F.H. Survival and function of intrastriatally grafted primary fibroblasts genetically modified to produce L-dopa. Neuron 6, 371–380 (1991).

    Article  CAS  Google Scholar 

  33. Jiao, S., Guevich, V. & Wolff, J.A. Long-term correction of rat model of Parkinson's disease by gene therapy. Nature 362, 450–453 (1993).

    Article  CAS  Google Scholar 

  34. Horellou, P., Brundin, P., Kalén, P., Mallet, J. & Björklund, A. In vivo release of DOPA and dopamine from genetically engineered cells grafted to the denervated rat striatum, Neuron 5, 393–402 (1990).

    Article  CAS  Google Scholar 

  35. Levallois, C., Privat, A. & Mallet, J. Adenovirus insertion encoding the Lac Z gene in human nervous cells in primary dissociated cultures. C. r. Acad. Sci. Paris, Life Sci. 317, 495–498 (1994).

    CAS  Google Scholar 

  36. Ridoux, V. et al. The use of adenovirus vectors for intracerebral grafting of transfected nervous cells. Neuro Report 5, 801–804 (1994).

    CAS  Google Scholar 

  37. Yang, Y. et al. Inactivation of E2A in recombinant adenoviruses improves the prospect for gene therapy in cystic fibrosis. Nature Genet. 7, 362–369 (1994).

    Article  CAS  Google Scholar 

  38. Brundin, P., issection, preparation, and implantation of human embryonic tissue, in Neural Transplantation, A Practical Approach, (eds Dunnnett, S. & Björklund, A.) 8, 139–160 (I RL Press, Oxford 1992).

    Google Scholar 

  39. Bottenstein, J.E. & Sato, G.H. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc. natn. Acad. Sci. U.S.A. 76, 514–517 (1979).

    Article  CAS  Google Scholar 

  40. Abercrombie, M. Estimation of nuclear population from microtome sections. Anat Rec. 94, 239–247 (1946).

    Article  CAS  Google Scholar 

  41. Tucker, G.C., Aoyama, H., Lipinski, M., Tursz, T. & Thiery, J.P. Identical reactivity of monoclonal antibodies HNK-1 and NC-1: conservation in vertebrates on cells derived from the neural primordium and on some leucocytes. Cell Diff. 14, 223–230 (1984).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabaté, O., Horellou, P., Vigne, E. et al. Transplantation to the rat brain of human neural progenitors that were genetically modified using adenoviruses. Nat Genet 9, 256–260 (1995). https://doi.org/10.1038/ng0395-256

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0395-256

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing