Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutation of the MXI1 gene in prostate cancer

Abstract

The Mxi1 protein negatively regulates Myc oncoprotein activity and thus potentially serves a tumour suppressor function. MXI1 maps to chromosome 10q24–q25, a region that is deleted in some cases of prostate cancer. We have detected mutations in the retained MXI1 alleles in four primary prostate tumours with 10q24–q25 deletions. Two tumours contained inactivating mutations, whereas two others contained the identical missense mutation. Fluorescence in situ hybridization also demonstrated loss of one MXI1 allele in an additional tumour lacking chromosome 10 abnormalities. MXI1 thus displays allelic loss and mutation in some cases of prostate cancer that may contribute to the pathogenesis or neoplastic evolution of this common malignancy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dalla-Favera, R., Martirotti, S., Galio, R.C., Erickson, J. & Croce, C.M. Translocation and rearrangement of the c-myc oncogene locus in human undifferentiated B-cell lymphomas. Science. 219, 963–965 (1983).

    Article  CAS  Google Scholar 

  2. Schwab, M. et al. Enhanced expression of the human gene N-myc consequent to amplification of DNA may contribute to malignant progression of neuroWastoma. Proc. natn. Acad. Sci. U.S.A. 81, 4940–4944 (1984).

    Article  CAS  Google Scholar 

  3. Nau, M. et al. L-myc, a new myc-related gene amplified and expressed in human small cell lung cancer. Nature. 318, 69–73 (1985).

    Article  CAS  Google Scholar 

  4. Adams, J.M. et al. The c-myc oncogene driven by Immunoglobulin enhancer induces lymphoid malignancy in transgenlc mice. Nature 318, 533–538 (1985).

    Article  CAS  Google Scholar 

  5. Murre, C., McCaw, P.S. & Baltimore, D. A new DMA binding and dimerizatlon motif in immunoglobulin, enhancer binding, daughterless, MyoD, and myc proteins. Cell 56, 777–783 (1989).

    Article  CAS  Google Scholar 

  6. Murrem, C. et al. Interactions between heterotogous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58, 537–544 (1989).

    Article  Google Scholar 

  7. Olson, E.N. MyoD family: a paradigm for development? Genes Dev. 4, 1454–1461 (1990).

    Article  CAS  Google Scholar 

  8. Davis, R.L., Cheng, P.F., Lassar, A.B. & Weintraub, H., MyoD DNA binding domain contains a recognition code for muscle-specific gene expression. Cell 60, 733–746 (1990).

    Article  CAS  Google Scholar 

  9. Lassar, A.B. et al. Functional activity of myogenic HLH protreins requires hetero-oligomerization with E12/E47-like proteins In vivo. Cell 66, 305–315 (1991).

    Article  CAS  Google Scholar 

  10. Weintraub, H. et al. The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251, 761–766 (1991).

    Article  CAS  Google Scholar 

  11. Kato, G.J., Barrett, J., Villa-Garcia, M. & Dang, C. An amino terminal c-myc domain required for neoplastic transformation activates transcription. Molec. Cell. Biol. 10, 5914–6920 (1990).

    Article  CAS  Google Scholar 

  12. Blackwood, E.M. & Eisenmann, R.N. Max: a helix-loop-helix-zipper protein that forms a sequence-specific DNA binding complex with myc. Science 251, 1211–1217 (1991).

    Article  CAS  Google Scholar 

  13. Prendergast, G.C., Lawe, D. & Ziff, E.B. Association of myn, the murine homolog of max, with c-myc stimulates methylatton-sensitive DNA binding and ras cotransormation. Cell 66, 395–407 (1991).

    Article  Google Scholar 

  14. Ayer, D.E., Kretzner, L. & Elsenmann, R.N. Mad: a heteradimeric partner for Max that antagonizes myc transcriptlonal activity. Cell 72, 211–222 (1993).

    Article  CAS  Google Scholar 

  15. Zervos, A., Gyuris, J. & Brent, R., Mxl1, a protein that specifically interacts with max to bind myc-max recognition sites. Cell 72, 223–232 (1993).

    Article  CAS  Google Scholar 

  16. Smith, M.J., Charron-Prochownik, D.C. & Prochownik, E.V. The leucine zipper of c-myc is required for the full inhibition of erythroleukemia differentiation. Molec. Cell. Biol. 10, 5333–5339 (1990).

    Article  CAS  Google Scholar 

  17. Dang, C.V. et al. Intracellular leucine zipper interactions suggest c-myc hetero-oligomerization. Molec. Cell. Biol. 11, 954–962 (1991).

    Article  CAS  Google Scholar 

  18. Amati, B. et al. Transcriptional activation by the human c-Myc oncoprotein in yeast requires interactions with Max. Nature 359, 423–426 (1992).

    Article  CAS  Google Scholar 

  19. Kretzner, L., Blackwood, E.M. & Eisenman, R.N. Myc and Max proteins possess distinct transcriptional activities. Nature 359, 426–429 (1992).

    Article  CAS  Google Scholar 

  20. Amati, B. et al. Oncogenic activity of the c-myc protein requires oligomerization with max. Cell 72, 233–245 (1993).

    Article  CAS  Google Scholar 

  21. Amin, C., Wagner, A.J. & Hay, N. Sequence-specific transcriptional activation by Myc and repression by Max. Molec. Cell. Biol. 13, 383–390 (1993).

    Article  CAS  Google Scholar 

  22. Gu, W., Chechova, K. & Dalla-Favera, R. Opposite regulation of gene transcription and cell proliferation by c-Myc and Max. Proc. natn. Acad. Sci. U.S.A. 90, 2935 (1993).

    Article  CAS  Google Scholar 

  23. Lahoz, E.G., Xu, L., Schreiber, A. & DePinho, R. Suppression of Myc, but not Ela, transformation activity by Max-associated proteins, Mad and Mxi1. Proc. natn. Acad. Sci. U.S.A. 91, 5503–5507 (1994).

    Article  CAS  Google Scholar 

  24. Edelhoff, S. et al. Mapping of two genes encoding members of a distinct subfamily of MAX interacting proteins: MAD to human chromosome 2 and mouse chromosome 6, and MXI1 to human chromosome 10 and mouse chromosome 19. Oncogene 9, 665 (1994).

    CAS  PubMed  Google Scholar 

  25. Shapiro, D.N. et al. Assignment of the human MAD and MXI1 genes to chromosomes 2p12–p13 and 10q24–q25. Genomics 23, 282–285 (1994).

    Article  CAS  Google Scholar 

  26. Sreekantaiah, C., Baer, M.R., Sole, F., Preisier, H.F. & Sandberg, A.A. Translocation (2;7) (p13;q36) in a case of acute non-lymphocytic leukemia evolving from a myelodysplastic syndrome. Cancer Genet. Cytogenet. 35, 199–204 (1988).

    Article  CAS  Google Scholar 

  27. Fleischman, E.W. et al. Chromsomal characteristics of malignant lymphoma. Hum. Genet. 82, 343–348 (1989).

    Article  CAS  Google Scholar 

  28. Heisler, C.H., Phillip, P. & Hansen, M.M. B-cell chronic lymphocytic leukaemia: clonal chromosome abnormalities and prognosis In 89 cases. Eur. J. Haematol. 43, 397–403 (1990).

    Article  Google Scholar 

  29. Yoffe, G., Howard-eebles, P.N., Smith, G., Tucker, P.W., Buchanan, G.R. Childhood chronic lymphocytic leukemia with t (2;14) translocation. J. Pediatr. 116, 114–117 (1990).

    Article  CAS  Google Scholar 

  30. Fults, D. & Pedone, C. Deletion mapping of the long arm of chromosome 10 In glioblastoma multiforme. Genes Chrom. Cancer. 7, 173–177 (1993).

    Article  CAS  Google Scholar 

  31. Bird, M.L., Ueshima, Y., Rowley, J.D., Haren, J.M., Vardiman, J.W. Chromosome abnormalities In B cell chronic lymphocytic leukemia and their clinical correlations. Leukemia 3, 182–191 (1989).

    CAS  PubMed  Google Scholar 

  32. Atkin, N.B. & Baker, M.C. Chromosome study of five cancers in prostate. Hum. Genet. 70, 359–364 (1985).

    Article  CAS  Google Scholar 

  33. Lundgren, R. et al. Cytogenetic analysis of 57 primary prostatic adenocarcinomas. Genes Chrom. Cancer. 4, 16–24 (1992).

    Article  CAS  Google Scholar 

  34. Brothman, A.R., Peehl, D.M., Patel, A.M. & McNeal, J.E. Frequency and pattern of karyotypic abnormalities in human prostatic cancer. Cancer Res. 50, 3795–3803 (1990).

    CAS  PubMed  Google Scholar 

  35. Arps, S. et al. Cytogenetic survey of 32 cancers of the prostate. Cancer Genet Cytogenet. 66, 93–99 (1993).

    Article  CAS  Google Scholar 

  36. Weinberg, R.A. Tumor suppressor genes. Science 254, 1138–1146 (1992).

    Article  Google Scholar 

  37. Levine, A.J. The tumor suppressor genes. Annu. Rev. Biochem. 62, 623–651 (1993).

    Article  CAS  Google Scholar 

  38. Kalllo, O., Syrjanen, S., Tervahuauta, S. & Syrjanen, K. A simple method for isolation of DNA from formalin-fixed pafaffin-embedded samples for PCR. J. Virol. Meth. 35, 39–47 (1991).

    Article  Google Scholar 

  39. Padgett, R.A., Grabowski, P.J., Konaraka, M.M., Seiber, S. & Sharp, P.A. Splicing of messenger RNA precursors. Annu. Rev. Biochem. 55, 1119–1150 (1986).

    Article  CAS  Google Scholar 

  40. Kazazian, H.H. & Boehm, C.D. Molecular basis and prenatal diagnosis of β-thalassemia. Blood. 72, 1107–1116 (1988).

    CAS  PubMed  Google Scholar 

  41. Saiki, R.K. et al. Primer-directed enzymatic amplifications of DNA with a thermostable DNA polymerase. Science 230, 487–491 (1988).

    Article  Google Scholar 

  42. Prochownik, E.V. & Van Antwerp, M.E. Differential patterns of DNA binding by myc and max proteins. Proc. natn. Acad. Sci. U.S.A. 90, 960–964 (1993).

    Article  CAS  Google Scholar 

  43. Epstein, I. in Prostate Biopsy Interpretation. Biopsy Interpretation Series. (ed. Silverberg, S.G ) 39–129 (Raven Press, New York, 1989).

    Google Scholar 

  44. Sidransky, D. et al. Clonal expansion of p53 mutant cells in association with brain tumor progression. Nature 355, 646–847 (1992).

    Article  Google Scholar 

  45. Marshall, R. et al. Rearrangement and expression of p53 in the chronic phase and blast crisis of chronic myetogenous leukemia. Blood 75, 180–189 (1990).

    Google Scholar 

  46. Nakai, H., Misawa, S., Toguchida, J., Yandell, D.W. & Ishizaki, K. Frequent p53 gene mutations in blast crisis of chronic myetogenous leukemia, especially In myetoid crisis harboring loss of chromsome 17p. Cancer Res. 52, 6588–6593 (1992).

    CAS  PubMed  Google Scholar 

  47. Baker, S.J. et al. p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res. 50, 7717–7722 (1990).

    CAS  Google Scholar 

  48. Frankel, R.H., Bayona, W., Koslow, M. & Newcomb, E.W. p53 mutations in human malingnant glomas: comparison of loss of heterzygosity with mutation frequency. Cancer Res. 52, 1427–1433 (1992).

    CAS  PubMed  Google Scholar 

  49. Brennan, T.J. & Olson, E.N. Myogenin resides In the nucleus and acquires high affinity for a conserved enhancer element on heterodemerizatton. Genes Dev. 4, 582–595 (1990).

    Article  CAS  Google Scholar 

  50. Dang, C.V., Dolde, C., Gillison, M.L. & Kato, G.J. Discrimination between related DNA sites by a single amino acid residue of Myc-related basic helix-loop-helix protein. Proc. natn. Acad. Sci. U.S.A. 88, 599–601 (1992).

    Article  Google Scholar 

  51. Van Antwerp, M.E., Chen, D.G., Chang, C. & Prochownik, E.V. A point mutation in the MyoD basic domain imparts c-myc-like properties. Proc. natn. Acad. Sci. U.S.A. 88, 9010–9014 (1992).

    Article  Google Scholar 

  52. Kunket, T.A. Rapid and efficient site-specific mutagenesis without phenotypic selections. Proc. natn. Acad. Sci. U.S.A. 82, 488–492 (1985).

    Article  Google Scholar 

  53. Jones, E., Zhu, X.L., Rohr, L.R., Stephenson, R.A. & Brothman, A.R. Aneusomy of chromosomes 7 and 17 detected by FISH in prostate cancer and the effects of selection in vitro. Genes Chrom. Cancer. 11, 163–170 (1994).

    Article  CAS  Google Scholar 

  54. Zervos, A., Gyuris, J. & Brent, R., Errata. Cell. 79, 389 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eagle, L., Yin, X., Brothman, A. et al. Mutation of the MXI1 gene in prostate cancer. Nat Genet 9, 249–255 (1995). https://doi.org/10.1038/ng0395-249

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0395-249

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing