Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dense Alu clustering and a potential new member of the NFκB family within a 90 kilobase HLA Class III segment

Abstract

We have conducted a detailed structural analysis of 90 kilobases (kb) of the HLA Class III region from the Bat2 gene at the centromeric end to 23 kb beyond TNF. A single contig of 80 kb was sequenced entirely with a group of four smaller contigs covering 10 kb being only partly sequenced. This region contains four known genes and a novel telomeric potential coding region. The genes are bracketed by long, dense clusters of Alu repeats belonging to all the major families. At least six new families of MER repeats and one pseudogene are intercalated within and between the Alu clusters. The most telomeric 3.8 kb contains three potential exons, one of which bears strong homology to the ankyrin domain of the DNA binding factors NFκB and IκB.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Batchelor, J.R. & McMichael, A.J. Progress in understanding HLA and disease associations. Br. Med. Bull. 43, 156–183 (1987).

    Article  CAS  Google Scholar 

  2. Crumpton, M.J. HLA in medicine: Introduction. Br. Med. Bull. 43, i–vi (1987).

    Article  Google Scholar 

  3. Sargent, C.A., Dunham, I. & Campbell, R.D. Identification of multiple HTF-island associated genes in the human major histocompatibility complex class III. EMBO J. 8, 2305–2312 (1989).

    Article  CAS  Google Scholar 

  4. Kendall, E., Sargent, C.A. & Campbell, R.D. Human major histocompatibility complex contains a new cluster of genes between the HLA-D and complement C4 loci. Nucl. Acids Res. 24, 7251–7257 (1990).

    Article  Google Scholar 

  5. Milner, C.M. & Campbell, R.D. Structure and expression of the three MHC-linked HSP70 genes. Immunogenetics 32, 242–251 (1990).

    Article  CAS  Google Scholar 

  6. Benjamin, R. & Parham, P. Guilt by association: HLA-B27 and ankylosing spondylitis. Immunol. Today 11, 137–142 (1990).

    Article  CAS  Google Scholar 

  7. Jacob, C.O. et al. Heritable MHC class II-associated differences in production of tumor necrosis factor a: Relevance to genetic predisposition to systemic lupus herytematosus. Proc. natn. Acad. Sci. U.S.A. 87, 1233–1237 (1990).

    Article  CAS  Google Scholar 

  8. Rubinstein, P. HLA and IDDM: Facts and speculations on the disease gene and its mode of inhertance. Hum. Immunol. 30, 270–277 (1991).

    Article  CAS  Google Scholar 

  9. Nepom, G.T. A unified hypothesis for the complex genetics of HLA associations with IDDM. Diabetes 39, 1153–1157 (1990).

    Article  CAS  Google Scholar 

  10. Raum, D., Alper, C.A. & Stein, R. Genetic markers for insulin dependent diabetes mellitus. Lancet 2, 1208–1213 (1979).

    Article  Google Scholar 

  11. Spies, T., Bresnahan, M. & Strominger, J.L. Human major histocompatibility complex contains a minimum of 19 genes between the complement cluster and HLA-B. Proc. natn. Acad. Sci. U.S.A. 86, 8955–8958 (1989).

    Article  CAS  Google Scholar 

  12. Banerji, J., Sands, J., Strominger, J.L. & Spies, T. A gene pairfrom the human major histocompatibility complex encodes large proline-rich proteins with multiple repeated motifs and a single ubiquitin-like domain. Proc. natn. Acad. Sci. U.S.A. 87, 2374–2378 (1990).

    Article  CAS  Google Scholar 

  13. French, M.A.H. & Dawkins, R.L. Central MHC genes, IgA deficiency and autoimmune disease. Immunol. Today 11, 271–273 (1990).

    Article  CAS  Google Scholar 

  14. Nedospasov, S.A. et al. Tandem arrangement of genes coding for tumor necrosis factor (TNFa) and lymphotoxin (TNFb) in the human genome. Cold Spring Harb. Symp. Quant. Biol. 51, 611–624 (1986).

    Article  CAS  Google Scholar 

  15. Jurka, J. & Milosavljevic, A. Reconstruction and analysis of human Alu genes. J. molec. Evol. 32, 105–121 (1991).

    Article  CAS  Google Scholar 

  16. Kerian, K. et al. The DNA binding subunit of NFκB is identical to factor KBF1 and homologous to the rel oncogene product: Cell 62, 1007–1018 (1990).

    Article  Google Scholar 

  17. Hasskill, S. et al. Characterisation of an immediate-early gene induced in adherent monocytes that encodes IkB-like activity. Cell 65, 1281–1289 (1991).

    Article  Google Scholar 

  18. Yang, S.Y. Assignment of HLA-A and HLA-B antigens for the reference panel of B-lymphoblastoid cell lines determined by one-dimentional isoelectric focusing (1D-IEF) gel electrophoresis. In Immunobiology of HLA Vol. 1 (ed. Dupont, B.) 12, 14, 16, 43–47 & 1079 (Springer, New York, 1987).

    Google Scholar 

  19. Deininger, P.L. Random subcloning of sonicated DNA: Application to shotgun DNA sequence analysis. Anal. Biochem. 129, 216–223 (1983).

    Article  CAS  Google Scholar 

  20. Dear, S. & Staden, R. A sequence assembly and editing program for efficient management of large projects. Nucl. Acids Res. 14, 3907–3911 (1991).

    Article  Google Scholar 

  21. Pearson, R.W. & Lipman, D.J. Improved tools for biological sequence comparison. Proc. natn. Acad. Sci. U.S.A. 85, 2444–2448 (1988).

    Article  CAS  Google Scholar 

  22. Karlin, S. & Altschul, S.T. Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc. natn. Acad. Sci. U.S.A. 87, 2264–2268 (1990).

    Article  CAS  Google Scholar 

  23. Claverie, J-M. & Bougueleret, L. Heuristic informational analysis of sequences. Nucl. Acids Res. 14, 179–196 (1986).

    Article  CAS  Google Scholar 

  24. Uberbacher, E.C. & Mural, R.J. Locating protein-coding regions in human DNA by a multiple sensor neural network approach. Proc. natn. Acad. Sci. U.S.A. 88, 11261–11265 (1991).

    Article  CAS  Google Scholar 

  25. Tsuge, I., Shen, F.W., Steinmetz, M. & Boyse, E.A. A gene in the H-2S: H-2D interval in the major histocompatibility complex which is transcribed in B cells and macrophages. Immunogenetics 26, 378–380 (1987).

    Article  CAS  Google Scholar 

  26. Degen, S.J. & Davies, E.W. Nucleotide sequence of the gene for human prothrombin. Biochemistry 26, 6165–6177 (1987).

    Article  CAS  Google Scholar 

  27. Liew, C.C. et al. Complete sequence organisation of the human cardiac beta-myosin heavy chain gene. Nucl. Acids Res. 18, 3647–3651 (1990).

    Article  CAS  Google Scholar 

  28. Jurka, J. & Zuckerkandl, E. Free left arms as precursor molecules in the evolution of Alu sequences. J. molec. Evol. 33, 49–56 (1991).

    Article  CAS  Google Scholar 

  29. Jurka, J. & Smith, T. A fundamental division in the Alu family of repeated sequences. Proc. natn. Acad. Sci. U.S.A. 85, 4775–4778 (1988).

    Article  CAS  Google Scholar 

  30. Kaplan, D.J., Jurka, J., Solus, J.F. & Duncan, C.H. Medium reiteration repetitive sequences in the human genome. Nucl. Acids Res. 19, 4731–47398 (1991).

    Article  CAS  Google Scholar 

  31. Li, Z., Lilienbaum, A, Butler-Brown, G. & Paulin, D. Human desmin-coding gene: complete nucleotide sequence, characterisation and regulation of expression during myogenesis and development. Gene 78, 243–254 (1989).

    Article  CAS  Google Scholar 

  32. Koller, M., Baumer, A. & Strehler, E.E. Characterisation of two novel human retropseudogenes related to the calmodulin-encoding gene Cam II. Gene 97, 245–251 (1991).

    Article  CAS  Google Scholar 

  33. Hourcade, D., Meisner, D.R., Bee, C., Zeldes, W. & Atkinson, J.P. Duplication and divergence of the amino terminal coding region of the complement receptor 1 (CR1) gene: an example of concerted (horizontal) evolution within a gene. J. biol. Chem. 265, 974–980 (1990).

    CAS  PubMed  Google Scholar 

  34. Ma, T.S. et al. Serial Alu sequence transposition interrupting a human β-creatine kinase pseudogene. Genomics 10, 390–399 (1991).

    Article  CAS  Google Scholar 

  35. Shipp, M.A. et al. Molecular cloning of the common acute lymphoblastic leukemia antigen (CALLA) identifies a type II intergral membrane protein. Proc. natn. Acad. Sci. U.S.A. 85, 4819–4823 (1988).

    Article  CAS  Google Scholar 

  36. Wang, A.M. & Desnick, R.J. Structural organisation and complete sequence of the human α-N-acetylgalactosaminidase gene: homology with the a-galactosidase A gene provides evidence for evolution from a common ancestral gene. Genomics 10, 133–142 (1991).

    Article  CAS  Google Scholar 

  37. Toda, K. et al. Structural and functional characterisation of human aromatase P-450 gene. Eur. J. Biochem. 193, 559–565 (1990).

    Article  CAS  Google Scholar 

  38. The, V.L. et al. Structure of two in tendem human estardiol 17-b-dehydrogenase gene. Molec. Endochnol. 4, 268–275 (1990).

    Article  Google Scholar 

  39. Jurka, J., Walichiewicz, J. & Milosavljevic, A. Prototypic sequences for human repetitive DNA. J. molec. Evol .(in the press).

  40. Otha, S., Goto, K., Arai, H. & Kagawa, Y. An extremely acidic amino-terminal presequence of the precursor for the human mitochondrial hinge protein. FEBS Lett. 226, 171–175 (1987).

    Article  Google Scholar 

  41. Stoppa-Lyonnet, D., Carter, P.E., Meo, T. & Tosi, M. Clusters of intragenic Alu repeats predispose the human C1 inhibitor locus to deleterious rearrangements. Proc. natn. Acad. Sci. U.S.A. 87, 1551–1555 (1990).

    Article  CAS  Google Scholar 

  42. Edwards, A. et al. Automated DNA sequencing of the human HPRT locus. Genomics 6, 593–608 (1989).

    Article  Google Scholar 

  43. Legouis, R. et al. The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules. Cell 67, 423–435 (1991).

    Article  CAS  Google Scholar 

  44. Martin-Gallardo, A. et al. Automated DNA sequencing and analysis of 106 kilobases from human chromosome 19q13.3. Nature Genet. 1, 34–39 (1992).

    Article  CAS  Google Scholar 

  45. McCombie, W.R. et al. Expressed genes, Alu repeats and polymorphisms in cosmids sequenced from chromosome 4p16.3. Nature Genet. 1, 358–353 (1992).

    Google Scholar 

  46. Chen, S.J. et al. Ph1+bcr- acute leukemias: implication of Alu sequences in a chromosomal translocation occurring in the new cluster region with the BCR gene. Oncogene 4, 195–202 (1989).

    CAS  PubMed  Google Scholar 

  47. Ohno, H., Takimoto, G. & Mckeihan, T.W. The candidate proto-oncogene bcl-3 is related to genes implicated in cell lineage determination and cell-cycle control. Cell 60, 991–997 (1990).

    Article  CAS  Google Scholar 

  48. Hannahan, D. Studies of transformation of Escherichia coli with plasmids. J. molec. Biol. 166, 157–162 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iris, F., Bougueleret, L., Prieur, S. et al. Dense Alu clustering and a potential new member of the NFκB family within a 90 kilobase HLA Class III segment. Nat Genet 3, 137–145 (1993). https://doi.org/10.1038/ng0293-137

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0293-137

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing