Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Parvovirus-B19-associated complications in renal transplant recipients

Abstract

Parvovirus B19 is a common human pathogen, causing erythema infectiosum in children, hydrops fetalis in pregnant women, and transient aplastic crisis in patients with chronic hemolytic anemia. Immunosuppressed patients can fail to mount an effective immune response to B19, resulting in prolonged or persistent viremia. Renal transplant recipients can develop symptomatic B19 infections as a result of primary infection acquired via the usual respiratory route or via the transplanted organ, or because of reactivation of latent or persistent viral infection. The most common manifestations of B19 infection in immunosuppressed patients are pure red cell aplasia and other cytopenias. Thus, this diagnosis should be considered in transplant recipients with unexplained anemia and reticulocytopenia or pancytopenia. Collapsing glomerulopathy and thrombotic microangiopathy have been reported in association with B19 infection in renal transplant recipients, but a causal relationship has not been definitively established. Prompt diagnosis of B19 infection in the renal transplant recipient requires a high index of suspicion and careful selection of diagnostic tests, which include serologies and polymerase chain reaction. Most patients benefit from intravenous immunoglobulin therapy and/or alteration or reduction of immunosuppressive therapy. Conservative therapy might be sufficient in some cases.

Key Points

  • Renal transplant recipients and kidney donors are not routinely tested for parvovirus B19 infection

  • Renal transplant recipients can develop symptomatic B19 infections as a result of primary infection acquired via the usual respiratory route or via the transplanted organ, or because of reactivation of latent or persistent viral infection

  • Pure red cell aplasia manifesting as chronic anemia is the most common presentation of B19 infection in immunosuppressed patients

  • Other cytopenias, as well as collapsing glomerulopathy and thrombotic microangiopathy, have been reported to be associated with B19 infection in renal transplant recipients

  • If B19 infection is suspected, serological tests for antibodies should be supplemented by a polymerase chain reaction assay to detect viral DNA

  • Pilot studies and case reports have shown that treatment with intravenous immunoglobulin and/or minimization of immunosuppression can effectively combat B19 infection

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Course of B19 viral infection in normal subjects, people with chronic hemolytic anemia, and immunosuppressed individuals.

Similar content being viewed by others

References

  1. Young NS and Brown KE (2004) Parvovirus B19. N Engl J Med 350: 586–597

    CAS  PubMed  Google Scholar 

  2. Heegaard ED and Brown KE (2002) Human parvovirus B19. Clin Microbiol Rev 15: 485–505

    PubMed  PubMed Central  Google Scholar 

  3. Kelly HA et al. (2000) The age-specific prevalence of human parvovirus immunity in Victoria, Australia compared with other parts of the world. Epidemiol Infect 124: 449–457

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Cohen BJ and Buckley MM (1988) The prevalence of antibody to human parvovirus B19 in England and Wales. J Med Microbiol 25: 151–153

    CAS  PubMed  Google Scholar 

  5. Nguyen QT et al. (2002) Identification and characterization of a second novel human erythrovirus variant, A6. Virology 301: 374–380

    CAS  PubMed  Google Scholar 

  6. Servant A et al. (2002) Genetic diversity within human erythroviruses: identification of three genotypes. J Virol 76: 9124–9134

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ekman A et al. (2007) Biological and immunological relations among human parvovirus B19 genotypes 1–3. J Virol 81: 6927–6935

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Brown KE (2004) Variants of B19. Dev Biol (Basel) 118: 71–77

    CAS  Google Scholar 

  9. Hokynar K et al. (2002) A new parvovirus genotype persistent in human skin. Virology 302: 224–228

    CAS  PubMed  Google Scholar 

  10. Ozawa K and Young N (1987) Characterization of capsid and noncapsid proteins of B19 parvovirus propagated in human erythroid bone marrow cell cultures. J Virol 61: 2627–2630

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Momoeda M et al. (1994) A putative nucleoside triphosphate-binding domain in the nonstructural protein of B19 parvovirus is required for cytotoxicity. J Virol 68: 8443–8446

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rosenfeld SJ et al. (1992) Unique region of the minor capsid protein of human parvovirus B19 is exposed on the virion surface. J Clin Invest 89: 2023–2029

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Brown KE et al. (1993) Erythrocyte P antigen: cellular receptor for B19 parvovirus. Science 262: 114–117

    CAS  PubMed  Google Scholar 

  14. Cooling LL et al. (1995) Multiple glycosphingolipids determine the tissue tropism of parvovirus B19. J Infect Dis 172: 1198–1205

    CAS  PubMed  Google Scholar 

  15. Weigel-Kelley KA et al. (2003) α5β1 integrin as a cellular coreceptor for human parvovirus B19: requirement of functional activation of β1 integrin for viral entry. Blood 102: 3927–3933

    CAS  PubMed  Google Scholar 

  16. Munakata Y et al. (2005) Ku80 autoantigen as a cellular coreceptor for human parvovirus B19 infection. Blood 106: 3449–3456

    CAS  PubMed  Google Scholar 

  17. Moffatt S et al. (1998) Human parvovirus B19 nonstructural (NS1) protein induces apoptosis in erythroid lineage cells. J Virol 72: 3018–3028

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhi N et al. (2006) Molecular and functional analyses of a human parvovirus B19 infectious clone demonstrates essential roles for NS1, VP1, and the 11-kilodalton protein in virus replication and infectivity. J Virol 80: 5941–5950

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Anderson MJ et al. (1985) Experimental parvoviral infection in humans. J Infect Dis 152: 257–265

    CAS  PubMed  Google Scholar 

  20. Takahashi T et al. (1990) Susceptibility of human erythropoietic cells to B19 parvovirus in vitro increases with differentiation. Blood 75: 603–610

    CAS  PubMed  Google Scholar 

  21. Morita E et al. (2003) Human parvovirus B19 nonstructural protein (NS1) induces cell cycle arrest at G1 phase. J Virol 77: 2915–2921

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Serjeant GR et al. (1993) Human parvovirus infection in homozygous sickle cell disease. Lancet 341: 1237–1240

    CAS  PubMed  Google Scholar 

  23. Saarinen UM et al. (1986) Human parvovirus B19-induced epidemic acute red cell aplasia in patients with hereditary hemolytic anemia. Blood 67: 1411–1417

    CAS  PubMed  Google Scholar 

  24. Modrow S and Dorsch S (2002) Antibody responses in parvovirus B19 infected patients. Pathol Biol (Paris) 50: 326–331

    CAS  Google Scholar 

  25. Corcoran A and Doyle S (2004) Advances in the biology, diagnosis and host–pathogen interactions of parvovirus B19. J Med Microbiol 53: 459–475

    CAS  PubMed  Google Scholar 

  26. Corcoran A et al. (2006) Establishment of functional B cell memory against parvovirus B19 capsid proteins may be associated with resolution of persistent infection. J Med Virol 78: 125–128

    CAS  PubMed  Google Scholar 

  27. Isa A et al. (2006) Aberrant cellular immune responses in humans infected persistently with parvovirus B19. J Med Virol 78: 129–133

    CAS  PubMed  Google Scholar 

  28. Tolfvenstam T et al. (2001) Direct ex vivo measurement of CD8+ T-lymphocyte responses to human parvovirus B19. J Virol 75: 540–543

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Isa A et al. (2005) Prolonged activation of virus-specific CD8+ T cells after acute B19 infection. PLoS Med 2: e343

    PubMed  PubMed Central  Google Scholar 

  30. Kasprowicz V et al. (2006) Tracking of peptide-specific CD4+ T-cell responses after an acute resolving viral infection: a study of parvovirus B19. J Virol 80: 11209–11217

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Norbeck O et al. (2005) Sustained CD8+ T-cell responses induced after acute parvovirus B19 infection in humans. J Virol 79: 12117–12121

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yaegashi N et al. (1989) Enzyme-linked immunosorbent assay for IgG and IgM antibodies against human parvovirus B19: use of monoclonal antibodies and viral antigen propagated in vitro. J Virol Methods 26: 171–181

    CAS  PubMed  Google Scholar 

  33. Palmer P et al. (1996) Antibody response to human parvovirus B19 in patients with primary infection by immunoblot assay with recombinant proteins. Clin Diagn Lab Immunol 3: 236–238

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zuffi E et al. (2001) Identification of an immunodominant peptide in the parvovirus B19 VP1 unique region able to elicit a long-lasting immune response in humans. Viral Immunol 14: 151–158

    CAS  PubMed  Google Scholar 

  35. Takahashi M et al. (1995) Human parvovirus B19 infection: immunohistochemical and electron microscopic studies of skin lesions. J Cutan Pathol 22: 168–172

    CAS  PubMed  Google Scholar 

  36. Magro CM et al. (2000) The cutaneous manifestations of human parvovirus B19 infection. Hum Pathol 31: 488–497

    CAS  PubMed  Google Scholar 

  37. Dijkmans BA et al. (1988) Human parvovirus B19 DNA in synovial fluid. Arthritis Rheum 31: 279–281

    CAS  PubMed  Google Scholar 

  38. Kerr JR et al. (2004) Circulating cytokines and chemokines in acute symptomatic parvovirus B19 infection: negative association between levels of pro-inflammatory cytokines and development of B19-associated arthritis. J Med Virol 74: 147–155

    CAS  PubMed  Google Scholar 

  39. Kurtzman G et al. (1989) Pure red-cell aplasia of 10 years' duration due to persistent parvovirus B19 infection and its cure with immunoglobulin therapy. N Engl J Med 321: 519–523

    CAS  PubMed  Google Scholar 

  40. Neild G et al. (1986) Parvovirus infection after renal transplant. Lancet 2: 1226–1227

    CAS  PubMed  Google Scholar 

  41. Eid AJ et al. (2006) Parvovirus B19 infection after transplantation: a review of 98 cases. Clin Infect Dis 43: 40–48

    PubMed  Google Scholar 

  42. Zolnourian ZR et al. (2000) Parvovirus B19 in kidney transplant patients. Transplantation 69: 2198–2202

    CAS  PubMed  Google Scholar 

  43. Ki CS et al. (2005) Incidence and clinical significance of human parvovirus B19 infection in kidney transplant recipients. Clin Transplant 19: 751–755

    PubMed  Google Scholar 

  44. Bertoni E et al. (1997) Aplastic anemia due to B19 parvovirus infection in cadaveric renal transplant recipients: an underestimated infectious disease in the immunocompromised host. J Nephrol 10: 152–156

    CAS  PubMed  Google Scholar 

  45. Yango A Jr et al. (2002) Donor-transmitted parvovirus infection in a kidney transplant recipient presenting as pancytopenia and allograft dysfunction. Transpl Infect Dis 4: 163–166

    PubMed  Google Scholar 

  46. Murer L et al. (2000) Thrombotic microangiopathy associated with parvovirus B19 infection after renal transplantation. J Am Soc Nephrol 11: 1132–1137

    CAS  PubMed  Google Scholar 

  47. Bertoni E et al. (1995) Severe aplastic anaemia due to B19 parvovirus infection in renal transplant recipient. Nephrol Dial Transplant 10: 1462–1463

    CAS  PubMed  Google Scholar 

  48. Sturm I et al. (1996) Chronic parvovirus B19 infection-associated pure red cell anaemia in a kidney transplant recipient. Nephrol Dial Transplant 11: 1367–1370

    CAS  PubMed  Google Scholar 

  49. Uemura N et al. (1995) Pure red cell aplasia caused by parvovirus B19 infection in a renal transplant recipient. Eur J Haematol 54: 68–69

    CAS  PubMed  Google Scholar 

  50. Cavallo R et al. (2003) B19 virus infection in renal transplant recipients. J Clin Virol 26: 361–368

    CAS  PubMed  Google Scholar 

  51. Bertoni E et al. (1997) Unusual incidence of aplastic anaemia due to B-19 parvovirus infection in renal transplant recipients. Transplant Proc 29: 818–819

    CAS  PubMed  Google Scholar 

  52. Egbuna O et al. (2006) A cluster of parvovirus B19 infections in renal transplant recipients: a prospective case series and review of the literature. Am J Transplant 6: 225–231

    CAS  PubMed  Google Scholar 

  53. Renoult E et al. (2006) Recurrent anemia in kidney transplant recipients with parvovirus B19 infection. Transplant Proc 38: 2321–2323

    CAS  PubMed  Google Scholar 

  54. Crook TW et al. (2000) Unusual bone marrow manifestations of parvovirus B19 infection in immunocompromised patients. Hum Pathol 31: 161–168

    CAS  PubMed  Google Scholar 

  55. Onguru P et al. (2006) Glomerulonephritis associating parvovirus B19 infection. Ren Fail 28: 85–88

    CAS  PubMed  Google Scholar 

  56. Ieiri N et al. (2005) Characteristics of acute glomerulonephritis associated with human parvovirus B19 infection. Clin Nephrol 64: 249–257

    CAS  PubMed  Google Scholar 

  57. Iwafuchi Y et al. (2002) Acute endocapillary proliferative glomerulonephritis associated with human parvovirus B19 infection. Clin Nephrol 57: 246–250

    CAS  PubMed  Google Scholar 

  58. Ohtomo Y et al. (2003) Nephrotic syndrome associated with human parvovirus B19 infection. Pediatr Nephrol 18: 280–282

    PubMed  Google Scholar 

  59. Komatsuda A et al. (2000) Endocapillary proliferative glomerulonephritis in a patient with parvovirus B19 infection. Am J Kidney Dis 36: 851–854

    CAS  PubMed  Google Scholar 

  60. Mori Y et al. (2002) Association of parvovirus B19 infection with acute glomerulonephritis in healthy adults: case report and review of the literature. Clin Nephrol 57: 69–73

    CAS  PubMed  Google Scholar 

  61. Takeda S et al. (2001) Renal involvement induced by human parvovirus B19 infection. Nephron 89: 280–285

    CAS  PubMed  Google Scholar 

  62. Taylor G et al. (2001) Renal involvement of human parvovirus B19 in an immunocompetent host. Clin Infect Dis 32: 167–169

    CAS  PubMed  Google Scholar 

  63. Wierenga KJ et al. (1995) Glomerulonephritis after human parvovirus infection in homozygous sickle-cell disease. Lancet 346: 475–476

    CAS  PubMed  Google Scholar 

  64. Tolaymat A et al. (1999) Parvovirus glomerulonephritis in a patient with sickle cell disease. Pediatr Nephrol 13: 340–342

    CAS  PubMed  Google Scholar 

  65. Moudgil A et al. (2001) Association of parvovirus B19 infection with idiopathic collapsing glomerulopathy. Kidney Int 59: 2126–2133

    CAS  PubMed  Google Scholar 

  66. Barsoum NR et al. (2002) Treatment of parvovirus B-19 (PV B-19) infection allows for successful kidney transplantation without disease recurrence. Am J Transplant 2: 425–428

    PubMed  Google Scholar 

  67. Swaminathan S et al. (2006) Collapsing and non-collapsing focal segmental glomerulosclerosis in kidney transplants. Nephrol Dial Transplant 21: 2607–2614

    PubMed  Google Scholar 

  68. Keung YK et al. (1999) Concomitant parvovirus B19 and cytomegalovirus infections after living-related renal transplantation. Nephrol Dial Transplant 14: 469–471

    CAS  PubMed  Google Scholar 

  69. Becker MR et al. (2005) Renal anemia aggravated by long-term parvovirus B19 and cytomegalovirus infection in a renal transplant patient: case report and evaluation of B19 seroprevalence in dialysis patients. Transplant Proc 37: 4306–4308

    CAS  PubMed  Google Scholar 

  70. Marchand S et al. (1999) Human parvovirus B19 infection in organ transplant recipients. Clin Transplant 13: 17–24

    CAS  PubMed  Google Scholar 

  71. Al-Khaldi N et al. (1994) Dual infection with human herpesvirus type 6 and parvovirus B19 in a renal transplant recipient. Pediatr Nephrol 8: 349–350

    CAS  PubMed  Google Scholar 

  72. Peterlana D et al. (2006) Serologic and molecular detection of human Parvovirus B19 infection. Clin Chim Acta 372: 14–23

    CAS  PubMed  Google Scholar 

  73. Musiani M et al. (1995) Parvovirus B19 clearance from peripheral blood after acute infection. J Infect Dis 172: 1360–1363

    CAS  PubMed  Google Scholar 

  74. Soderlund-Venermo M et al. (2002) Persistence of human parvovirus B19 in human tissues. Pathol Biol (Paris) 50: 307–316

    CAS  Google Scholar 

  75. Hokynar K et al. (2004) Detection and differentiation of human parvovirus variants by commercial quantitative real-time PCR tests. J Clin Microbiol 42: 2013–2019

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Liefeldt L et al. (2005) Recurrent high level parvovirus B19/genotype 2 viremia in a renal transplant recipient analyzed by real-time PCR for simultaneous detection of genotypes 1 to 3. J Med Virol 75: 161–169

    CAS  PubMed  Google Scholar 

  77. Liefeldt L et al. (2002) Eradication of parvovirus B19 infection after renal transplantation requires reduction of immunosuppression and high-dose immunoglobulin therapy. Nephrol Dial Transplant 17: 1840–1842

    CAS  PubMed  Google Scholar 

  78. Geetha D et al. (2000) Pure red cell aplasia caused by Parvovirus B19 infection in solid organ transplant recipients: a case report and review of literature. Clin Transplant 14: 586–591

    CAS  PubMed  Google Scholar 

  79. Subtirelu MM et al. (2005) Acute renal failure in a pediatric kidney allograft recipient treated with intravenous immunoglobulin for parvovirus B19 induced pure red cell aplasia. Pediatr Transplant 9: 801–804

    PubMed  Google Scholar 

  80. Tsinalis D et al. (2002) Acute renal failure in a renal allograft recipient treated with intravenous immunoglobulin. Am J Kidney Dis 40: 667–670

    PubMed  Google Scholar 

  81. Levy JB and Pusey CD (2000) Nephrotoxicity of intravenous immunoglobulin. QJM 93: 751–755

    CAS  PubMed  Google Scholar 

  82. Shimmura H et al. (2000) Discontinuation of immunosuppressive antimetabolite for parvovirus B19-associated anemia in kidney transplant patients. Transplant Proc 32: 1967–1970

    CAS  PubMed  Google Scholar 

  83. Wong TY et al. (1999) Parvovirus B19 infection causing red cell aplasia in renal transplantation on tacrolimus. Am J Kidney Dis 34: 1132–1136

    CAS  PubMed  Google Scholar 

  84. Choi SH et al. (2002) A case of persistent anemia in a renal transplant recipient: association with parvovirus B19 infection. Scand J Infect Dis 34: 71–75

    PubMed  Google Scholar 

  85. Gregoor PS and Weimar W (2005) Tacrolimus and pure red-cell aplasia. Am J Transplant 5: 195–196

    PubMed  Google Scholar 

  86. Arzouk N et al. (2006) Parvovirus B19-induced anemia in renal transplantation: a role for rHuEPO in resistance to classical treatment. Transpl Int 19: 166–169

    PubMed  Google Scholar 

  87. Wicki J et al. (1997) Parvovirus [correction of Parovirus] B19-induced red cell aplasia in solid-organ transplant recipients: two case reports and review of the literature. Hematol Cell Ther 39: 199–204

    CAS  PubMed  Google Scholar 

  88. Kerr JR et al. (2003) Cytokine gene polymorphisms associated with symptomatic parvovirus B19 infection. J Clin Pathol 56: 725–727

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Moore TL (2000) Parvovirus-associated arthritis. Curr Opin Rheumatol 12: 289–294

    CAS  PubMed  Google Scholar 

  90. Kerr JR (2000) Pathogenesis of human parvovirus B19 in rheumatic disease. Ann Rheum Dis 59: 672–683

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Lu J et al. (2006) Activation of synoviocytes by the secreted phospholipase A2 motif in the VP1-unique region of parvovirus B19 minor capsid protein. J Infect Dis 193: 582–590

    CAS  PubMed  Google Scholar 

  92. Ergaz Z and Ornoy A (2006) Parvovirus B19 in pregnancy. Reprod Toxicol 21: 421–435

    CAS  PubMed  Google Scholar 

  93. Yaegashi N et al. (1999) Serologic study of human parvovirus B19 infection in pregnancy in Japan. J Infect 38: 30–35

    CAS  PubMed  Google Scholar 

  94. Enders M et al. (2004) Fetal morbidity and mortality after acute human parvovirus B19 infection in pregnancy: prospective evaluation of 1018 cases. Prenat Diagn 24: 513–518

    PubMed  Google Scholar 

  95. Lee PC et al. (2000) Parvovirus B19-related acute hepatitis in an immunosuppressed kidney transplant. Nephrol Dial Transplant 15: 1486–1488

    CAS  PubMed  Google Scholar 

  96. Shan YS et al. (2001) Fibrosing cholestatic hepatitis possibly related to persistent parvovirus B19 infection in a renal transplant recipient. Nephrol Dial Transplant 16: 2420–2422

    CAS  PubMed  Google Scholar 

  97. Laurenz M et al. (2006) Severe parvovirus B19 encephalitis after renal transplantation. Pediatr Transplant 10: 978–981

    CAS  PubMed  Google Scholar 

  98. Bilge I et al. (2005) Central nervous system vasculitis secondary to parvovirus B19 infection in a pediatric renal transplant patient. Pediatr Nephrol 20: 529–533

    PubMed  Google Scholar 

  99. Moudgil A et al. (1997) Parvovirus B19 infection-related complications in renal transplant recipients: treatment with intravenous immunoglobulin. Transplantation 64: 1847–1850

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This Review was supported by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases. We appreciate the critical review of the manuscript by Dr Jeffrey Miller.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meryl Waldman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waldman, M., Kopp, J. Parvovirus-B19-associated complications in renal transplant recipients. Nat Rev Nephrol 3, 540–550 (2007). https://doi.org/10.1038/ncpneph0609

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph0609

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing