Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hospital-acquired hyponatremia—why are hypotonic parenteral fluids still being used?

Abstract

Hospital-acquired hyponatremia can be lethal. There have been multiple reports of death or permanent neurological impairment in both children and adults. The main factor contributing to the development of hospital-acquired hyponatremia is routine use of hypotonic fluids in patients in whom the excretion of free water, which is retained in response to excess arginine vasopressin (AVP), might be impaired. The practice of administering hypotonic parental fluids was established over 50 years ago, before recognition of the fact that there are numerous potential stimuli for AVP production in most hospitalized patients. Virtually all neurological morbidity resulting from hospital-acquired hyponatremia has been associated with administration of hypotonic fluids. Multiple prospective studies have shown that 0.9% NaCl is effective prophylaxis against hyponatremia. There is not a single report in the literature of neurological complications resulting from the use of 0.9% NaCl in non-neurosurgical patients. Patients at greatest risk of developing hyponatremic encephalopathy following hypotonic fluid administration are children, premenopausal females, postoperative patients, and those with brain injury or infection, pulmonary disease or hypoxemia. When hyponatremic encephalopathy develops, immediate administration of 3% NaCl is essential. In this Review, we discuss the question of why administering hypotonic fluids is unphysiologic and potentially dangerous, the settings in which isotonic fluids should be administered to prevent hyponatremia, and the appropriate treatment of hyponatremic encephalopathy.

Key Points

  • Hospitalized patients have numerous stimuli for arginine vasopressin production and are at risk of developing hyponatremia

  • Routine administration of hypotonic parenteral fluid to hospitalized patients can result in fatal hyponatremic encephalopathy

  • 0.9% NaCl (154 mmol/l) should be administered as prophylaxis against hyponatremia, except in the setting of a free water deficit or ongoing free water losses

  • Patients at greatest risk of developing neurological complications secondary to hyponatremia are children, premenopausal females, postoperative patients, and those with brain injury, brain infection or hypoxemia

  • 3% NaCl (513 mmol/l) is an essential treatment for hyponatremic encephalopathy

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Treatment algorithm for symptomatic hyponatremia

Similar content being viewed by others

References

  1. Moritz ML and Ayus JC (2003) Prevention of hospital-acquired hyponatremia: a case for using isotonic saline. Pediatrics 111: 227–230

    Article  Google Scholar 

  2. Moritz ML and Ayus JC (2004) Hospital-acquired hyponatremia: why are there still deaths? Pediatrics 113: 1395–1396

    Article  Google Scholar 

  3. Moritz ML and Ayus JC (2005) Preventing neurological complications from dysnatremias in children. Pediatr Nephrol 20: 1687–1700

    Article  Google Scholar 

  4. Hawkins RC (2003) Age and gender as risk factors for hyponatremia and hypernatremia. Clin Chim Acta 337: 169–172

    Article  CAS  Google Scholar 

  5. Hoorn EJ et al. (2004) Acute hyponatremia related to intravenous fluid administration in hospitalized children: an observational study. Pediatrics 113: 1279–1284

    Article  Google Scholar 

  6. Hatherill M (2004) Rubbing salt in the wound. Arch Dis Child 89: 414–418

    Article  CAS  Google Scholar 

  7. Holliday MA et al. (2004) Acute hospital-induced hyponatremia in children: a physiologic approach. J Pediatr 145: 584–587

    Article  Google Scholar 

  8. Moritz ML and Ayus JC (2005) Hospital-induced hyponatremia. J Pediatr 147: 273–274

    Article  Google Scholar 

  9. Friedman AL (2005) Pediatric hydration therapy: historical review and a new approach. Kidney Int 67: 380–388

    Article  Google Scholar 

  10. Moritz ML and Ayus JC (2005) Hypotonic fluids should not be used in volume-depleted children. Kidney Int 68: 409–410

    Article  Google Scholar 

  11. [No authors listed] Postoperative fluid management and hyponatraemia [http://www.ich.ucl.ac.uk/clinserv/anaesthetics/professionals/10postopfluid.html] (accessed 2 May 2007)

  12. Holliday MA et al. (2006) Fluid therapy for children: facts, fashions and questions. Arch Dis Child [doi: 10.1136/adc.2006.106377]

    Article  Google Scholar 

  13. Achinger SG et al. (2006) Dysnatremias: why are patients still dying? South Med J 99: 353–362

    Article  Google Scholar 

  14. Roberts KB (2001) Fluid and electrolytes: parenteral fluid therapy. Pediatr Rev 22: 380–387

    Article  CAS  Google Scholar 

  15. Nathens AB and Maier RV (2003) Perioperative fluids and electrolytes. In Essential Practice of Surgery: Basic Science and Clinical Evidence, 29–37 (Ed. Norton JA) Secaucus: Springer-Verlag

    Chapter  Google Scholar 

  16. Driscoll DF and Bistrian BR (2003) Parenteral and enteral nutrition in the intensive care unit. In Irwin & Rippe's Intensive Care Medicine, edn 5, 2057–2069 (Eds Irwin RS and Rippe JM) Philidelphia: Lippincott Williams & Wilkins

    Google Scholar 

  17. [No authors listed] Postoperative management [http://www.steinergraphics.com/surgical/005_14.7D.html] (accessed 2 May 2007)

  18. Stoneham MD and Hill EL (1997) Variability in post-operative fluid and electrolyte prescription. Br J Clin Pract 51: 82–84

    CAS  PubMed  Google Scholar 

  19. Rassam SS and Counsell DJ (2005) Perioperative fluid therapy. Crit Care Pain 5: 161–165

    Google Scholar 

  20. MacKay G et al. (2006) Randomized clinical trial of the effect of postoperative intravenous fluid restriction on recovery after elective colorectal surgery. Br J Surg 93: 1469–1474

    Article  CAS  Google Scholar 

  21. Ferreira da Cunha D et al. (2000) Hyponatremia in acute-phase response syndrome patients in general surgical wards. Am J Nephrol 20: 37–41

    Article  CAS  Google Scholar 

  22. Moritz ML and Ayus JC (2006) Case 8-2006: a woman with Crohn's disease and altered mental status. N Engl J Med 354: 2833–2834

    Article  CAS  Google Scholar 

  23. Talbot NB et al. (1953) Medical progress; homeostatic limits to safe parenteral fluid therapy. N Engl J Med 248: 1100–1108

    Article  CAS  Google Scholar 

  24. Holliday MA and Segar WE (1957) The maintenance need for water in parenteral fluid therapy. Pediatrics 19: 823–832

    CAS  PubMed  Google Scholar 

  25. Gerigk M et al. (1996) Arginine vasopressin and renin in acutely ill children: implication for fluid therapy. Acta Paediatr 85: 550–553

    Article  CAS  Google Scholar 

  26. Gerigk M et al. (1993) Clinical settings and vasopressin function in hyponatraemic children. Eur J Pediatr 152: 301–305

    Article  CAS  Google Scholar 

  27. Anderson RJ et al. (1985) Hyponatremia: a prospective analysis of its epidemiology and the pathogenetic role of vasopressin. Ann Intern Med 102: 164–168

    Article  CAS  Google Scholar 

  28. Gross PA et al. (1987) Pathogenesis of clinical hyponatremia: observations of vasopressin and fluid intake in 100 hyponatremic medical patients. Eur J Clin Invest 17: 123–129

    Article  CAS  Google Scholar 

  29. Arieff AI et al. (1992) Hyponatraemia and death or permanent brain damage in healthy children. BMJ 304: 1218–1222

    Article  CAS  Google Scholar 

  30. Halberthal M et al. (2001) Lesson of the week: acute hyponatraemia in children admitted to hospital: retrospective analysis of factors contributing to its development and resolution. BMJ 322: 780–782

    Article  CAS  Google Scholar 

  31. Armon K et al. (2007) Hyponatraemia and hypokalaemia during intravenous fluid administration. Arch Dis Child [doi: 10.1136/adc.2006.093823]

    Article  CAS  Google Scholar 

  32. Coulthard MG et al. (2007) Perioperative fluid therapy in children. Br J Anaesth 98: 146–147

    Article  CAS  Google Scholar 

  33. Moritz ML and Ayus JC (2006) Risk factors for death or neurologic impairment from hyponatremic encephalopathy in children in the new millenium. J Am Soc Nephrol 17: 38A

    Google Scholar 

  34. Hanna S et al. (2003) Incidence of hyponatraemia and hyponatraemic seizures in severe respiratory syncytial virus bronchiolitis. Acta Paediatr 92: 430–434

    Article  CAS  Google Scholar 

  35. McJunkin JE et al. (2001) La Crosse encephalitis in children. N Engl J Med 344: 801–807

    Article  CAS  Google Scholar 

  36. Mehta S et al. (2005) A randomized controlled trial of fluid supplementation in term neonates with severe hyperbilirubinemia. J Pediatr 147: 781–785

    Article  CAS  Google Scholar 

  37. Moritz ML and Ayus JC (2006) Re: Randomized controlled trial of fluid supplementation in term neonates with severe hyperbilirubinemia. J Pediatr 149: 581–582

    Article  Google Scholar 

  38. Arieff AI (1986) Hyponatremia, convulsions, respiratory arrest, and permanent brain damage after elective surgery in healthy women. N Engl J Med 314: 1529–1535

    Article  CAS  Google Scholar 

  39. Ayus JC et al. (1992) Postoperative hyponatremic encephalopathy in menstruant women. Ann Intern Med 117: 891–897

    Article  CAS  Google Scholar 

  40. Ayus JC and Arieff AI (1995) Pulmonary complications of hyponatremic encephalopathy: noncardiogenic pulmonary edema and hypercapnic respiratory failure. Chest 107: 517–521

    Article  CAS  Google Scholar 

  41. Chung HM et al. (1986) Postoperative hyponatremia: a prospective study. Arch Intern Med 146: 333–336

    Article  CAS  Google Scholar 

  42. Aronson D et al. (2002) Hyponatremia as a complication of cardiac catheterization: a prospective study. Am J Kidney Dis 40: 940–946

    Article  Google Scholar 

  43. Neville KA et al. (2006) Isotonic is better than hypotonic saline for intravenous rehydration of children with gastroenteritis: a prospective randomised study. Arch Dis Child 91: 226–232

    Article  CAS  Google Scholar 

  44. Scheingraber S et al. (1999) Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology 90: 1265–1270

    Article  CAS  Google Scholar 

  45. McFarlane C and Lee A (1994) A comparison of Plasmalyte 148 and 0.9% saline for intra-operative fluid replacement. Anaesthesia 49: 779–781

    Article  CAS  Google Scholar 

  46. Waters JH et al. (2001) Normal saline versus lactated Ringer's solution for intraoperative fluid management in patients undergoing abdominal aortic aneurysm repair: an outcome study. Anesth Analg 93: 817–822

    Article  CAS  Google Scholar 

  47. Wilkes NJ et al. (2001) The effects of balanced versus saline-based hetastarch and crystalloid solutions on acid-base and electrolyte status and gastric mucosal perfusion in elderly surgical patients. Anesth Analg 93: 811–816

    Article  CAS  Google Scholar 

  48. Boldt J et al. (2002) Are lactated Ringer's solution and normal saline solution equal with regard to coagulation? Anesth Analg 94: 378–384

    Article  CAS  Google Scholar 

  49. Takil A et al. (2002) Early postoperative respiratory acidosis after large intravascular volume infusion of lactated Ringer's solution during major spine surgery. Anesth Analg 95: 294–298

    Article  CAS  Google Scholar 

  50. Musch W and Decaux G (1998) Treating the syndrome of inappropriate ADH secretion with isotonic saline. QJM 91: 749–753

    Article  CAS  Google Scholar 

  51. Moritz ML et al. (2005) Post-operative hyponatremia: a meta-analysis. J Am Soc Nephrol 16: 44A

    Google Scholar 

  52. Steele A et al. (1997) Postoperative hyponatremia despite near-isotonic saline infusion: a phenomenon of desalination. Ann Intern Med 126: 20–25

    Article  CAS  Google Scholar 

  53. Asadollahi K et al. (2006) Hyponatraemia as a risk factor for hospital mortality. QJM 99: 877–880

    Article  CAS  Google Scholar 

  54. Caramelo C et al. (2002) Regulation of postoperative water excretion: a study on mechanisms. J Am Soc Nephrol 13: 654A

    Google Scholar 

  55. Moritz ML and Ayus JC (2001) La Crosse encephalitis in children. N Engl J Med 345: 148–149

    Article  CAS  Google Scholar 

  56. Papadopoulos MC et al. (2002) Aquaporin water channels and brain edema. Mt Sinai J Med 69: 242–248

    PubMed  Google Scholar 

  57. Torres JM et al. (1998) Streptococcus pneumoniae bacteremia in a community hospital. Chest 113: 387–390

    Article  CAS  Google Scholar 

  58. Fine MJ et al. (1997) A prediction rule to identify low-risk patients with community-acquired pneumonia. N Engl J Med 336: 243–250

    Article  CAS  Google Scholar 

  59. Ayus JC and Arieff AI (1999) Chronic hyponatremic encephalopathy in postmenopausal women: association of therapies with morbidity and mortality. JAMA 281: 2299–2304

    Article  CAS  Google Scholar 

  60. Ayus JC et al. (1987) Treatment of symptomatic hyponatremia and its relation to brain damage: a prospective study. N Engl J Med 317: 1190–1195

    Article  CAS  Google Scholar 

  61. Vexler ZS et al. (1994) Hypoxic and ischemic hypoxia exacerbate brain injury associated with metabolic encephalopathy in laboratory animals. J Clin Invest 93: 256–264

    Article  CAS  Google Scholar 

  62. Nzerue C et al. (2002) Predictors of mortality with severe hyponatremia. J Am Soc Nephrol 13: A0728

    Google Scholar 

  63. Hoorn EJ et al. (2006) Development of severe hyponatraemia in hospitalized patients: treatment-related risk factors and inadequate management. Nephrol Dial Transplant 21: 70–76

    Article  Google Scholar 

  64. Ayus JC et al. (2006) Hyponatremia with hypoxia: effects on brain adaptation, perfusion, and histology in rodents. Kidney Int 69: 1319–1325

    Article  CAS  Google Scholar 

  65. Lee DS et al. (2003) Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model. JAMA 290: 2581–2587

    Article  CAS  Google Scholar 

  66. Borroni G et al. (2000) Clinical relevance of hyponatraemia for the hospital outcome of cirrhotic patients. Dig Liver Dis 32: 605–610

    Article  CAS  Google Scholar 

  67. Huda MS et al. (2006) Investigation and management of severe hyponatraemia in a hospital setting. Postgrad Med J 82: 216–219

    Article  CAS  Google Scholar 

  68. Ayus JC et al. (2005) Hyponatremia in marathon runners. N Engl J Med 353: 427–428

    Article  CAS  Google Scholar 

  69. Alam NH et al. (2006) Symptomatic hyponatremia during treatment of dehydrating diarrheal disease with reduced osmolarity oral rehydration solution. JAMA 296: 567–573

    Article  CAS  Google Scholar 

  70. Moritz ML (2007) Fluid replacement for severe hyponatremia. JAMA 297: 41–42

    Article  CAS  Google Scholar 

  71. Greenberg A and Verbalis JG (2006) Vasopressin receptor antagonists. Kidney Int 69: 2124–2130

    Article  CAS  Google Scholar 

  72. Schrier RW et al. (2006) Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med 355: 2099–2112

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Karen Branstetter for her editorial assistance. JC Ayus is supported by NIH grant VO1DK0664A1. Désirée Lie, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L Moritz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moritz, M., Ayus, J. Hospital-acquired hyponatremia—why are hypotonic parenteral fluids still being used?. Nat Rev Nephrol 3, 374–382 (2007). https://doi.org/10.1038/ncpneph0526

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph0526

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing