Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: focal segmental glomerulosclerosis

Abstract

Focal segmental glomerulosclerosis (FSGS), a subtype of 'idiopathic nephrotic syndrome', is not a single disease, but a lesion that initially affects the glomerulus followed by the tubulointerstitium and renal vessels. The term 'FSGS' does not accurately encompass the various pathologic features of the glomerulus, which are not always focal, segmental or sclerotic. Particular variants of FSGS, such as collapsing glomerulopathy and the glomerular tip lesion, exemplify the nosologic uncertainty inherent in the classification of glomerular lesions. Pathologic variation notwithstanding, all pathologic processes that affect the podocyte lead to one of the histologic subtypes of FSGS. This specialized cell type has essential roles in maintaining the integrity of glomerular architecture, resisting endocapillary hydraulic pressure and hindering egress of proteins into the urinary space. Once initiated, podocyte lesions and ensuing fibrosis are usually irreversible, at least in human forms of FSGS. Remarkable progress has been made in unraveling the mechanisms of podocyte dysregulation that accompany the cellular variants of FSGS and in identifying genetic mutations affecting proteins of the slit diaphragm. Hopefully, this progress will drastically improve treatments for what is one of the most difficult therapeutic challenges to confront the nephrologist.

Key Points

  • The diverse histologic subtypes of focal segmental glomerulosclerosis (FSGS) are unified by the central pathophysiological role of the podocyte

  • Nuclear dysregulation, derangement of the cell cycle and morphologic changes are features of podocytes in FSGS

  • Podocyte dysregulation perturbs glomerular architecture leading to the primary clinical feature of FSGS—proteinuria

  • Evidence supports a central role for an elusive 'glomerular permeability factor' in pathogenesis of FSGS

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Artist's view of the arrangement of the podocyte foot process and slit diaphragm proteins.
Figure 2: Cellular variant of focal segmental glomerulosclerosis.
Figure 3: Other variants of focal segmental glomerulosclerosis.
Figure 4: Podocyte transdifferentiation.
Figure 5: Podocyte proliferation in cellular variants of focal segmental glomerulosclerosis.

Similar content being viewed by others

References

  1. Pavenstädt H et al. (2003) Cell biology of the glomerular podocyte. Physiol Rev 83: 253–307

    Article  PubMed  Google Scholar 

  2. Meyrier A and Niaudet P (2005) Minimal changes and focal-segmental glomerulosclerosis. In: Oxford Textbook of Clinical Nephrology, 439–469, edn 3 (Eds AM Davison et al.) (vol 1). Oxford: Oxford University Press

    Google Scholar 

  3. Kerjaschki D (2001) Caught flat-footed: podocyte damage and the molecular bases of focal glomerulosclerosis. J Clin Invest 108: 1583–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kriz W and Le Hir M (2005) Pathways to nephron loss starting from glomerular diseases—insights from animal models. Kidney Int 67: 404–419

    Article  PubMed  Google Scholar 

  5. Bertani T et al. (1982) Adriamycin-induced nephrotic syndrome in rats: sequence of pathologic events. Lab Invest 46: 16–23

    CAS  PubMed  Google Scholar 

  6. Korbet SM et al. (1988) Recurrent nephrotic syndrome in renal allografts. Am J Kidney Dis 11: 270–276

    Article  CAS  PubMed  Google Scholar 

  7. Meyrier A (2003) E pluribus unum: the riddle of focal-segmental glomerulosclerosis. Semin Nephrol 23: 135–140

    Article  PubMed  Google Scholar 

  8. Fogo A et al. (1995) Is focal segmental glomerulosclerosis really focal? Distribution of lesions in adults and children. Kidney Int 47: 1690–1696

    Article  CAS  PubMed  Google Scholar 

  9. Fuiano G et al. (1996) Serial morphometric analysis of sclerotic lesions in primary „focal” segmental glomerulosclerosis. J Am Soc Nephrol 7: 49–55

    CAS  PubMed  Google Scholar 

  10. Erkan E et al. (2005) Induction of renal tubular cell apoptosis in focal segmental glomerulosclerosis: roles of proteinuria and Fas-dependent pathways. J Am Soc Nephrol 16: 398–407

    Article  CAS  PubMed  Google Scholar 

  11. D'Agati VD et al. (2004) Pathologic classification of focal segmental glomerulosclerosis: a working proposal. Am J Kidney Dis 43: 368–382

    Article  PubMed  Google Scholar 

  12. Schwartz MM et al. (1999) Focal segmental glomerulosclerosis: prognostic implications of the cellular lesion. J Am Soc Nephrol. 10: 1900–1907

    CAS  PubMed  Google Scholar 

  13. Chun MJ et al. (2004) Focal segmental glomerulosclerosis in nephrotic adults: presentation, prognosis, and response to therapy of the histologic variants. J Am Soc Nephrol 8: 2169–2177

    Article  Google Scholar 

  14. Korbet SM (2002) Treatment of primary focal segmental glomerulosclerosis. Kidney Int 62: 2301–2310

    Article  PubMed  Google Scholar 

  15. D'Agati V (2003) Pathologic classification of focal segmental glomerulosclerosis. Semin Nephrol 23: 117–134

    Article  PubMed  Google Scholar 

  16. D'Agati V (2005) Glomérulopathies avec „collapsus” du flocculus. In Actualités Néphrologiques Jean Hamburger Hôpital Necker 9–25 (Eds P Lesavre et al.) Paris: Médecine-Sciences Flammarion

    Google Scholar 

  17. Schwartz MM and Lewis EJ (1985) Focal segmental glomerular sclerosis. The cellular lesion. Kidney Int 28: 968–974

    Article  CAS  PubMed  Google Scholar 

  18. Haas M et al. (1995) Increasing incidence of focal-segmental glomerulosclerosis among adult nephropathies. Am J Kidney Dis 26: 740–750

    Article  CAS  PubMed  Google Scholar 

  19. Valeri A et al. (1996) Idiopathic collapsing focal segmental glomerulosclerosis. Kidney Int 50: 1734–1746

    Article  CAS  PubMed  Google Scholar 

  20. Braden GL et al. (2000) Changing incidence of glomerular diseases in adults. Am J Kidney Dis 35: 878–883

    Article  CAS  PubMed  Google Scholar 

  21. Filler G et al. (2003) Is there really an increase in non-minimal change nephrotic syndrome in children? Am J Kidney Dis 42: 1107–1113

    Article  PubMed  Google Scholar 

  22. Barri YM et al. (2004) Podocyte injury associated glomerulopathies induced by pamidronate. Kidney Int 65: 634–641

    Article  PubMed  Google Scholar 

  23. Herman ES and Klotman PE (2003) HIV-associated nephropathy: Epidemiology, pathogenesis and treatment. Semin Nephrol 23: 200–208

    Article  PubMed  Google Scholar 

  24. Tanawattanachaoren S et al. (2000) Parvovirus B 19 DNA in kidney tissue of patients with focal segmental glomerulosclerosis. Am J Kidney Dis 35: 1166–1174

    Article  Google Scholar 

  25. Moudgil A et al. (2001) Association of parvovirus B 19 infection with idiopathic collapsing glomerulopathy. Kidney Int 59: 2126–2133

    Article  CAS  PubMed  Google Scholar 

  26. Li RM et al. (2002) Molecular identification of SV40 infection in human subjects and possible association with kidney disease. J Am Soc Nephrol 13: 2320–2330

    Article  CAS  PubMed  Google Scholar 

  27. Tomlinson L et al. (2003) Acute cytomegalovirus infection complicated by collapsing glomerulopathy. Nephrol Dial Transplant 18:187–189

    Article  PubMed  Google Scholar 

  28. Meyrier A (2004) Nephrotic focal segmental glomerulosclerosis in 2004: an update. Nephrol Dial Transplant 10: 2437–2444

    Google Scholar 

  29. Greenberg A et al. (1997) Focal segmental glomerulosclerosis associated with nephrotic syndrome in cholesterol atheroembolism: clinicopathological correlations. Am J Kidney Dis 29: 334–344

    Article  CAS  PubMed  Google Scholar 

  30. Thadani R et al. (1996) Preliminary description of focal segmental glomerulosclerosis in patients with renovascular disease. Lancet 347: 231–233

    Article  Google Scholar 

  31. Stokes MB et al. (1999) Collapsing glomerulopathy in renal allografts: a morphologic pattern with diverse clinicopathologic associations. Am J Kidney Dis 33: 658–666

    Article  CAS  PubMed  Google Scholar 

  32. Meehan SM et al. (1998) De novo collapsing glomerulopathy in renal allografts Transplantation 65: 1192–1197

    Article  CAS  PubMed  Google Scholar 

  33. Nadasdy T et al. (2002) Zonal distribution of glomerular collapse in renal allografts: Possible role of vascular changes. Hum Pathol 33: 437–441

    Article  PubMed  Google Scholar 

  34. Howie AJ et al. (2005) Evolution of nephrotic-associated focal segmental glomerulosclerosis and relation to the glomerular tip lesion. Kidney Int 67: 987–1001

    Article  PubMed  Google Scholar 

  35. Stokes MB et al. (2004) Glomerular tip lesion: a distinct entity within the minimal change disease/focal segmental glomerulosclerosis spectrum. Kidney Int 65: 1690–1702

    Article  PubMed  Google Scholar 

  36. Haas M (2005) The glomerular tip lesion: what does it really mean? Kidney Int 67: 1188–1189

    Article  PubMed  Google Scholar 

  37. Shalhoub RJ (1974) Pathogenesis of lipoid nephrosis: a disorder of T cell function. Lancet 2: 556–559

    Article  CAS  PubMed  Google Scholar 

  38. Brenchley PEC (2003) Vascular permeability factors in steroid-sensitive nephrotic syndrome and focal segmental glomerulosclerosis. Nephrol Dial Transpl 18 (Suppl 6): vi21–vi25

    CAS  Google Scholar 

  39. Lagrue G et al. (1991) Transmission d'un syndrome néphrotique à deux nouveaux nés: régression spontanée. La Presse Médicale 20: 255–257

    CAS  PubMed  Google Scholar 

  40. Kemper MJ et al. (2001) Transmission of glomerular permeability factor from a mother to her child. N Engl J Med 344: 386–387

    Article  CAS  PubMed  Google Scholar 

  41. Zimmerman SW (1984) Increased urinary protein excretion in the rat produced by serum from a patient with recurrent focal glomerular sclerosis after renal transplantation. Clin Nephrol 22: 32–38

    CAS  PubMed  Google Scholar 

  42. Dantal J et al. (1994) Effect of plasma protein adsorption on protein excretion in kidney-transplant recipients with recurrent nephrotic syndrome. N Engl J Med 330: 7–14

    Article  CAS  PubMed  Google Scholar 

  43. Le Berre L et al. (2000) Effect of plasma fractions from patients with focal and segmental glomerulosclerosis on rat proteinuria. Kidney Int 58: 2502–2511

    Article  CAS  PubMed  Google Scholar 

  44. Savin VJ et al. (1996) Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental sclerosis. N Engl J Med 334: 878–882

    Article  CAS  PubMed  Google Scholar 

  45. Esnault VL et al. (1999) Effect of protein A immunoadsorption in nephrotic syndrome of various etiologies. J Am Soc Nephrol 10: 2014–2017

    CAS  PubMed  Google Scholar 

  46. Kraft SW et al. (2004) Glomerular podocytopathy in patients with systemic lupus erythematosus. J Am Soc Nephrol 16: 175–179

    Article  Google Scholar 

  47. Coward RJ et al. (2005) Nephrotic plasma alters slit diaphragm dependent signaling and translocates nephrin, podocin and CD2 associated protein in cultured human podocytes. J Am Soc Nephrol 16: 629–637

    Article  CAS  PubMed  Google Scholar 

  48. McCarthy ET et al. (2004) Sera from patients with collapsing focal segmental glomerulosclerosis increase albumin permeability of isolated glomeruli. J Lab Clin Med 143: 225–229

    Article  CAS  PubMed  Google Scholar 

  49. Ghiggeri GM et al. (2001) Permeability plasma factors in nephrotic syndrome: more than one factor, more than one inhibitor. Nephrol Dial Transplant 16: 882–885

    Article  CAS  PubMed  Google Scholar 

  50. Deen WM (2004) What determines glomerular capillary permeability? J Clin Invest 114: 1412–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hara M et al. (2001) Urinary podocytes in primary focal segmental glomerulosclerosis. Nephron 89: 342–347

    Article  CAS  PubMed  Google Scholar 

  52. Hara M et al. (2005) Apical cell membranes are shed into urine from injured podocytes: a novel phenomenon of podocyte injury. J Am Soc Nephrol 16: 408–416

    Article  CAS  PubMed  Google Scholar 

  53. Bariety J et al. (1998) Podocytes undergo phenotypic changes and express macrophagic-associated markers in idiopathic collapsing glomerulopathy. Kidney Int 53: 918–928

    Article  CAS  PubMed  Google Scholar 

  54. Barisoni L et al. (1999) The dysregulated podocyte phenotype: a novel concept in the pathogenesis of collapsing idiopathic focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol 10: 51–61

    CAS  PubMed  Google Scholar 

  55. Bariety J et al. (2001) Post-transplantation relapse of FSGS is characterized by glomerular epithelial cell transdifferentiation. J Am Soc Nephrol 12: 261–274

    CAS  PubMed  Google Scholar 

  56. Nagata M et al. (1998) Cell cycle regulation and differentiation in the human podocyte lineage. Am J Pathol 153: 1511–1520

    CAS  Google Scholar 

  57. Shankland SJ et al. (2000) Differential expression of cyclin-dependent kinase inhibitors in human glomerular disease: role in podocyte proliferation and maturation. Kidney Int 58: 674–683

    Article  CAS  PubMed  Google Scholar 

  58. Conlon PJ et al. (1999) Spectrum of disease in familial focal and segmental glomerulosclerosis. Kidney Int 56: 1863–1871

    Article  CAS  PubMed  Google Scholar 

  59. Winn MP (2003) Approach to the evaluation of heritable diseases and update on familial focal segmental glomerulosclerosis. Nephrol Dial Transplant 18 (Suppl 6): vi14–vi20

    CAS  PubMed  Google Scholar 

  60. Benzing T (2004) Signaling at the slit diaphragm. J Am Soc Nephrol 15: 1382–1391

    Article  PubMed  Google Scholar 

  61. Patrakka J et al. (2000) Congenital nephrotic syndrome (NPHS1): features resulting from different mutations in Finnish patients. Kidney Int 58: 972–980

    Article  CAS  PubMed  Google Scholar 

  62. Fuchshuber A et al. (1996) Congenital nephrotic syndrome of the Finnish type: linkage to the locus in non-Finnish population. Pediatr Nephrol 10: 135–138

    Article  CAS  PubMed  Google Scholar 

  63. Boute N et al. (2000) NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet 24: 349–354

    Article  CAS  PubMed  Google Scholar 

  64. Caridi G et al. (2003) Broadening the spectrum of diseases related to podocin mutations. J Am Soc Nephrol 14: 1278–1286

    CAS  Google Scholar 

  65. Niaudet P (2004) Podocin and nephrotic syndrome: implications for the clinician. J Am Soc Nephrol 15: 832–834

    Article  PubMed  Google Scholar 

  66. Huber TB et al. (2003) Molecular basis of the functional podocin–nephrin complex: mutations in the NPHS2 gene disrupt nephrin targeting to lipid raft microdomains. Hum Mol Genet 12: 3397–3405

    Article  CAS  PubMed  Google Scholar 

  67. Schultheiss M et al. (2004) No evidence for genotype/phenotype correlation in NPHS1 and NPHS2 mutations. Pediatr Nephrol 19: 1340–1348

    Article  PubMed  Google Scholar 

  68. Tsukagushi H et al. (2002) NPHS2 mutations in late-onset focal segmental glomerulosclerosis: R229Q is a common disease allele. J Clin Invest 110: 1659–1666

    Article  Google Scholar 

  69. Kaplan JM et al. (2000) Mutations in ACTN4, encoding α-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Med 24: 251–256

    Article  CAS  Google Scholar 

  70. Kim JM et al. (2003) CD2-associated protein haploinsufficiency is linked to glomerular disease susceptibility. Science 300: 1298–1300

    Article  CAS  PubMed  Google Scholar 

  71. Scharnhorst V et al. (2001) WT1 proteins: functions in growth and differentiation Gene 273: 141–161

    Article  CAS  PubMed  Google Scholar 

  72. Gubler MC (2002) WT1, a multiform protein. Contribution of genetic models to the understanding of its various functions. J Am Soc Nephrol 13: 2192–2194

    Article  CAS  PubMed  Google Scholar 

  73. Wagner N et al. (2004) The major podocyte protein nephrin is transcriptionally activated by the Wilm's tumor suppressor WT1. J Am Soc Nephrol 15: 3044–3051

    Article  PubMed  Google Scholar 

  74. McTaggart SJ et al. (2001) Clinical spectrum of Denys–Drash and Frasier syndrome. Pediatr Nephrol 16: 335–339

    Article  CAS  PubMed  Google Scholar 

  75. Little S et al. (2005) A WT1 exon 1 mutation in a child diagnosed with Denys–Drash syndrome. Pediatr Nephrol 20: 81–85

    Article  PubMed  Google Scholar 

  76. Yang Y et al. (1999) WT1 and PAX-2 podocyte expression in Denys–Drash syndrome and isolated diffuse mesangial sclerosis. Am J Pathol 154: 181–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Scott DA et al. (2005) Congenital diaphragmatic hernia in WAGR syndrome. Am J Med Genet 134: 430–433

    Article  CAS  PubMed  Google Scholar 

  78. Orloff MS et al. (2005) Variants in the Wilms' tumor gene are associated with focal segmental glomerulosclerosis in the African American population. Physiol Genomics 21: 212–221

    Article  CAS  PubMed  Google Scholar 

  79. Guéry B et al. (2003) The spectrum of systemic involvement in adults presenting with renal lesions and mitochondrial tRNA (Leu) mutation. J Am Soc Nephrol 14: 2099–2108

    Article  PubMed  Google Scholar 

  80. Boerkel CF et al. (2002) Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia. Nat Genet 30: 215–220

    Article  Google Scholar 

Download references

Acknowledgements

I am greatly indebted to Jean Bariéty MD, Professor Emeritus, Paris-Descartes University, for kindly providing the histopathologic images and critically reviewing the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Meyrier.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyrier, A. Mechanisms of Disease: focal segmental glomerulosclerosis. Nat Rev Nephrol 1, 44–54 (2005). https://doi.org/10.1038/ncpneph0025

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph0025

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing