Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: the evolving understanding of liver allograft rejection

Abstract

Liver transplantation is a successful treatment for select forms of liver disease and is unrivalled amongst other forms of solid organ transplantation in the ability of the recipient to develop long-term tolerance to the allograft. Much of this success can be attributed to the inherently tolerogenic manner in which antigens are presented in the liver and the presence of specialized regulatory lymphocyte populations. These observations are not universal, however, and a proportion of recipients develop problematic allograft rejection. Anti-allograft responses lead to an influx of effector cells that target hepatic parenchymal cells and induce apoptosis through members of the tumor necrosis factor superfamily. Anti-rejection therapies have traditionally targeted the entire lymphocyte response against the allograft and, whilst these therapies have been efficacious at limiting effector cell responses, they have also had deleterious effects on the regulatory cell populations that are required to promote long-term tolerance. The emergence of newer anti-rejection drugs that have the potential to target the effector response selectively, whilst preserving the much needed tolerogenic responses, has afforded us the opportunity to refine our future immunosuppressant strategies.

Key Points

  • Liver transplantation is an effective treatment for select patients with liver disease, but its success is still hampered by allograft rejection

  • Antigen presentation in the liver is skewed towards tolerance and encourages allograft acceptance

  • Loss of tolerance and a shift towards an anti-allograft effector response leads to sustained targeting and apoptosis of cholangiocytes and hepatocytes through members of the tumor necrosis factor superfamily

  • Regulatory T cells have an important role in allograft tolerance

  • Modern anti-rejection therapies should be tailored to preserve regulatory T-cell function whilst targeting the effector responses

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intracellular and cell-surface markers expressed by regulatory T cells.

Similar content being viewed by others

References

  1. Barber K et al. (2007) Life expectancy of adult liver allograft recipients in the UK. Gut 56: 279–282

    CAS  PubMed  Google Scholar 

  2. Ormonde DG et al. (1999) Banff schema for grading liver allograft rejection: utility in clinical practice. Liver Transpl Surg 5: 261–268

    CAS  PubMed  Google Scholar 

  3. Perry I and Neuberger J (2005) Immunosuppression: towards a logical approach in liver transplantation. Clin Exp Immunol 139: 2–10

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Crispe IN et al. (2006) Cellular and molecular mechanisms of liver tolerance. Immunol Rev 213: 101–118

    PubMed  Google Scholar 

  5. Adams DH and Afford SC (2005) Effector mechanisms of nonsuppurative destructive cholangitis in graft-versus-host disease and allograft rejection. Semin Liver Dis 25: 281–297

    PubMed  Google Scholar 

  6. Afford SC et al. (2001) CD40 activation-induced, Fas-dependent apoptosis and NF-kappaB/AP-1 signaling in human intrahepatic biliary epithelial cells. FASEB J 15: 2345–2354

    CAS  PubMed  Google Scholar 

  7. Hubscher SG (2006) Transplantation pathology. Semin Diagn Pathol 23: 170–181

    PubMed  Google Scholar 

  8. Eksteen B et al. (2007) Immune-mediated liver injury. Semin Liver Dis 27: 351–366

    CAS  PubMed  Google Scholar 

  9. Wood KJ and Sakaguchi S (2003) Regulatory T cells in transplantation tolerance. Nat Rev Immunol 3: 199–210

    CAS  PubMed  Google Scholar 

  10. Morelli AE and Thomson AW (2007) Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol 7: 610–621

    CAS  PubMed  Google Scholar 

  11. Karim M et al. (2005) CD25+CD4+ regulatory T cells generated by exposure to a model protein antigen prevent allograft rejection: antigen-specific reactivation in vivo is critical for bystander regulation. Blood 105: 4871–4877

    CAS  PubMed  Google Scholar 

  12. Crispe IN (2003) Hepatic T cells and liver tolerance. Nat Rev Immunol 3: 51–62

    CAS  PubMed  Google Scholar 

  13. Bowen DG et al. (2005) Intrahepatic immunity: a tale of two sites. Trends Immunol 26: 512–517

    CAS  PubMed  Google Scholar 

  14. Willberg C et al. (2003) HCV immunology—death and the maiden T cell. Cell Death Differ 10 (Suppl 1): S39–S47

    CAS  PubMed  Google Scholar 

  15. Klugewitz K et al. (2002) Immunomodulatory effects of the liver: deletion of activated CD4+ effector cells and suppression of IFN-gamma-producing cells after intravenous protein immunization. J Immunol 169: 2407–2413

    CAS  PubMed  Google Scholar 

  16. Limmer A et al. (2005) Cross-presentation of oral antigens by liver sinusoidal endothelial cells leads to CD8 T cell tolerance. Eur J Immunol 35: 2970–2981

    CAS  PubMed  Google Scholar 

  17. John B and Crispe IN (2005) TLR-4 regulates CD8+ T cell trapping in the liver. J Immunol 175: 1643–1650

    CAS  PubMed  Google Scholar 

  18. Li W et al. (2001) Il-12 antagonism enhances apoptotic death of T cells within hepatic allografts from Flt3 ligand-treated donors and promotes graft acceptance. J Immunol 166: 5619–5628

    CAS  PubMed  Google Scholar 

  19. Randow F et al. (1995) Mechanism of endotoxin desensitization: involvement of interleukin 10 and transforming growth factor beta. J Exp Med 181: 1887–1892

    CAS  PubMed  Google Scholar 

  20. Medvedev AE et al. (2002) Dysregulation of LPS-induced Toll-like receptor 4-MyD88 complex formation and IL-1 receptor-associated kinase 1 activation in endotoxin-tolerant cells. J Immunol 169: 5209–5216

    PubMed  Google Scholar 

  21. Polakos NK et al. (2007) Early intrahepatic accumulation of CD8+ T cells provides a source of effectors for nonhepatic immune responses. J Immunol 179: 201–210

    CAS  PubMed  Google Scholar 

  22. Klugewitz K et al. (2004) The spectrum of lymphoid subsets preferentially recruited into the liver reflects that of resident populations. Immunol Lett 93: 159–162

    CAS  PubMed  Google Scholar 

  23. Gremion C et al. (2004) Cytotoxic T lymphocytes derived from patients with chronic hepatitis C virus infection kill bystander cells via Fas–FasL interaction. J Virol 78: 2152–2157

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hingorani R et al. (2000) CD95/Fas signaling in T lymphocytes induces the cell cycle control protein p21cip-1/WAF-1, which promotes apoptosis. J Immunol 164: 4032–4036

    CAS  PubMed  Google Scholar 

  25. John B et al. (2007) Immune role of hepatic TLR-4 revealed by orthotopic mouse liver transplantation. Hepatology 45: 178–186

    CAS  PubMed  Google Scholar 

  26. Bowen DG et al. (2004) The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity. J Clin Invest 114: 701–712

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Antonysamy MA et al. (1999) Evidence for a role of IL-17 in alloimmunity: a novel IL-17 antagonist promotes heart graft survival. Transplant Proc 31: 93

    CAS  PubMed  Google Scholar 

  28. Denning TL et al. (2007) Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat Immunol 8: 1086–1094

    CAS  PubMed  Google Scholar 

  29. Shortman K and Liu YJ (2002) Mouse and human dendritic cell subtypes. Nat Rev Immunol 2: 151–161

    CAS  PubMed  Google Scholar 

  30. Khanna A et al. (2000) Effects of liver-derived dendritic cell progenitors on Th1- and Th2-like cytokine responses in vitro and in vivo. J Immunol 164: 1346–1354

    CAS  PubMed  Google Scholar 

  31. Lai WK et al. (2007) Hepatitis C is associated with perturbation of intrahepatic myeloid and plasmacytoid dendritic cell function. J Hepatol 47: 338–347

    CAS  PubMed  Google Scholar 

  32. Goddard S et al. (2004) Interleukin-10 secretion differentiates dendritic cells from human liver and skin. Am J Pathol 164: 511–519

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lai WK et al. (2007) Hepatitis C is associated with perturbation of intrahepatic myeloid and plasmacytoid dendritic cell function. J Hepatol 47: 338–347

    CAS  PubMed  Google Scholar 

  34. Kubo T et al. (2004) Regulatory T cell suppression and anergy are differentially regulated by proinflammatory cytokines produced by TLR-activated dendritic cells. J Immunol 173: 7249–7258

    CAS  PubMed  Google Scholar 

  35. Kuwana M (2002) Induction of anergic and regulatory T cells by plasmacytoid dendritic cells and other dendritic cell subsets. Hum Immunol 63: 1156–1163

    CAS  PubMed  Google Scholar 

  36. Mazzoni A et al. (2003) Cutting edge: histamine inhibits IFN-alpha release from plasmacytoid dendritic cells. J Immunol 170: 2269–2273

    CAS  PubMed  Google Scholar 

  37. Ito T et al. (2007) Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J Exp Med 204: 105–115

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsung A et al. (2005) Hepatic ischemia/reperfusion injury involves functional TLR4 signaling in nonparenchymal cells. J Immunol 175: 7661–7668

    CAS  PubMed  Google Scholar 

  39. Tsung A et al. (2007) Increasing numbers of hepatic dendritic cells promote HMGB1-mediated ischemia-reperfusion injury. J Leukoc Biol 81: 119–128

    CAS  PubMed  Google Scholar 

  40. Lalor PF and Adams DH (2002) The liver : a model of organ-specific lymphocyte recruitment. Expert Rev Mol Med 4: 1–16

    PubMed  Google Scholar 

  41. Thomson AW et al. (1995) Identification of donor-derived dendritic cell progenitors in bone marrow of spontaneously tolerant liver allograft recipients. Transplantation 60: 1555–1559

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bishop GA et al. (1996) Tolerance to rat liver allografts. III. Donor cell migration and tolerance-associated cytokine production in peripheral lymphoid tissues. J Immunol 156: 4925–4931

    CAS  PubMed  Google Scholar 

  43. Gould DS and Auchincloss H Jr (1999) Direct and indirect recognition: the role of MHC antigens in graft rejection. Immunol Today 20: 77–82

    CAS  PubMed  Google Scholar 

  44. Herrera OB et al. (2004) A novel pathway of alloantigen presentation by dendritic cells. J Immunol 173: 4828–4837

    CAS  PubMed  Google Scholar 

  45. Thery C et al. (2002) Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol 3: 1156–1162

    CAS  PubMed  Google Scholar 

  46. Abe M and Thomson AW (2003) Influence of immunosuppressive drugs on dendritic cells. Transpl Immunol 11: 357–365

    CAS  PubMed  Google Scholar 

  47. Turnquist HR et al. (2007) Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance. J Immunol 178: 7018–7031

    CAS  PubMed  Google Scholar 

  48. Lu L et al. (1997) Blockade of the CD40-CD40 ligand pathway potentiates the capacity of donor-derived dendritic cell progenitors to induce long-term cardiac allograft survival. Transplantation 64: 1808–1815

    CAS  PubMed  Google Scholar 

  49. Lan YY et al. (2006) “Alternatively activated” dendritic cells preferentially secrete IL-10, expand Foxp3+CD4+ T cells, and induce long-term organ allograft survival in combination with CTLA4-Ig. J Immunol 177: 5868–5877

    CAS  PubMed  Google Scholar 

  50. Mellor AL et al. (2004) Specific subsets of murine dendritic cells acquire potent T cell regulatory functions following CTLA4-mediated induction of indoleamine 2,3 dioxygenase. Int Immunol 16: 1391–1401

    CAS  PubMed  Google Scholar 

  51. Garrovillo M et al. (1999) Indirect allorecognition in acquired thymic tolerance: induction of donor-specific tolerance to rat cardiac allografts by allopeptide-pulsed host dendritic cells. Transplantation 68: 1827–1834

    CAS  PubMed  Google Scholar 

  52. Ochando JC et al. (2006) Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nat Immunol 7: 652–662

    CAS  PubMed  Google Scholar 

  53. Sakaguchi S (2004) Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22: 531–562

    CAS  PubMed  Google Scholar 

  54. Groux H et al. (1997) A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389: 737–742

    CAS  PubMed  Google Scholar 

  55. Weiner HL (2001) Oral tolerance: immune mechanisms and the generation of Th3-type TGF-beta-secreting regulatory cells. Microbes Infect 3: 947–954

    CAS  PubMed  Google Scholar 

  56. Sakaguchi S et al. (2006) Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 212: 8–27

    CAS  PubMed  Google Scholar 

  57. Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6: 345–352

    CAS  PubMed  Google Scholar 

  58. Seddiki N et al. (2006) Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med 203: 1693–1700

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ziegler SF (2005) FOXP3: of mice and men. Annu Rev Immunol 24: 209–226

    Google Scholar 

  60. Bennett CL and Ochs HD (2001) IPEX is a unique X-linked syndrome characterized by immune dysfunction, polyendocrinopathy, enteropathy, and a variety of autoimmune phenomena. Curr Opin Pediatr 13: 533–538

    CAS  PubMed  Google Scholar 

  61. Fontenot JD et al. (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4: 330–336

    CAS  PubMed  Google Scholar 

  62. de la Rosa M et al. (2004) Interleukin-2 is essential for CD4+CD25+ regulatory T cell function. Eur J Immunol 34: 2480–2488

    CAS  PubMed  Google Scholar 

  63. Coombes JL et al. (2007) A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 204: 1757–1764

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lehmann J et al. (2002) Expression of the integrin alpha Ebeta 7 identifies unique subsets of CD25+ as well as CD25 regulatory T cells. Proc Natl Acad Sci USA 99: 13031–13036

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ruprecht CR et al. (2005) Coexpression of CD25 and CD27 identifies FoxP3+ regulatory T cells in inflamed synovia. J Exp Med 201: 1793–1803

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Levings MK and Roncarolo MG (2005) Phenotypic and functional differences between human CD4+CD25+ and type 1 regulatory T cells. Curr Top Microbiol Immunol 293: 303–326

    CAS  PubMed  Google Scholar 

  67. Carrier Y et al. (2007) Th3 cells in peripheral tolerance. I. Induction of Foxp3-positive regulatory T cells by Th3 cells derived from TGF-beta T cell-transgenic mice. J Immunol 178: 179–185

    CAS  PubMed  Google Scholar 

  68. Roncarolo MG and Battaglia M (2007) Regulatory T-cell immunotherapy for tolerance to self antigens and alloantigens in humans. Nat Rev Immunol 7: 585–598

    CAS  PubMed  Google Scholar 

  69. Lan RY et al. (2006) Liver-targeted and peripheral blood alterations of regulatory T cells in primary biliary cirrhosis. Hepatology 43: 729–737

    PubMed  Google Scholar 

  70. Rushbrook SM et al. (2005) Regulatory T cells suppress in vitro proliferation of virus-specific CD8+ T cells during persistent hepatitis C virus infection. J Virol 79: 7852–7859

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Unitt E et al. (2005) Compromised lymphocytes infiltrate hepatocellular carcinoma: the role of T-regulatory cells. Hepatology 41: 722–730

    CAS  PubMed  Google Scholar 

  72. Agarwal K et al. (2000) Cytotoxic T lymphocyte antigen-4 (CTLA-4) gene polymorphisms and susceptibility to type 1 autoimmune hepatitis. Hepatology 31: 49–53

    CAS  PubMed  Google Scholar 

  73. Longhi MS et al. (2006) Functional study of CD4+CD25+ regulatory T cells in health and autoimmune hepatitis. J Immunol 176: 4484–4491

    CAS  PubMed  Google Scholar 

  74. Li W et al. (2006) The role of Foxp3+ regulatory T cells in liver transplant tolerance. Transplant Proc 38: 3205–3206

    CAS  PubMed  Google Scholar 

  75. Jiang X et al. (2006) The importance of CD25(+)CD4(+) regulatory T cells in mouse hepatic allograft tolerance. Liver Transpl 12: 1112–1118

    PubMed  Google Scholar 

  76. Li W et al. (2006) Anti-CD25 mAb administration prevents spontaneous liver transplant tolerance. Transplant Proc 38: 3207–3208

    CAS  PubMed  Google Scholar 

  77. Xia G et al. (2006) Targeting acute allograft rejection by immunotherapy with ex vivo-expanded natural CD4+ CD25+ regulatory T cells. Transplantation 82: 1749–1755

    PubMed  Google Scholar 

  78. Pu LY et al. (2007) Adoptive transfusion of ex vivo donor alloantigen-stimulated CD4(+)CD25(+) regulatory T cells ameliorates rejection of DA-to-Lewis rat liver transplantation. Surgery 142: 67–73

    PubMed  Google Scholar 

  79. Demirkiran A et al. (2007) Allosuppressive donor CD4+CD25+ regulatory T cells detach from the graft and circulate in recipients after liver transplantation. J Immunol 178: 6066–6072

    CAS  PubMed  Google Scholar 

  80. Koshiba T et al. (2007) Clinical, immunological, and pathological aspects of operational tolerance after pediatric living-donor liver transplantation. Transpl Immunol 17: 94–97

    CAS  PubMed  Google Scholar 

  81. Demirkiran A et al. (2006) Low circulating regulatory T-cell levels after acute rejection in liver transplantation. Liver Transpl 12: 277–284

    PubMed  Google Scholar 

  82. VanBuskirk AM et al. (2000) Human allograft acceptance is associated with immune regulation. J Clin Invest 106: 145–155

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Steger U et al. (2006) CD25+CD4+ regulatory T cells develop in mice not only during spontaneous acceptance of liver allografts but also after acute allograft rejection. Transplantation 82: 1202–1209

    PubMed  Google Scholar 

  84. Goddard S and Adams DH (2002) Methylprednisolone therapy for acute rejection: too much of a good thing. Liver Transpl 8: 535–536

    PubMed  Google Scholar 

  85. Calne R (1996) WOFIE hypothesis: some thoughts on an approach toward allograft tolerance. Transplant Proc 28: 1152

    CAS  PubMed  Google Scholar 

  86. Wang C et al. (2001) A short course of methylprednisolone immunosuppression inhibits both rejection and spontaneous acceptance of rat liver allografts. Transplantation 72: 44–51

    CAS  PubMed  Google Scholar 

  87. Dresske B et al. (2006) WOFIE stimulates regulatory T cells: a 2-year follow-up of renal transplant recipients. Transplantation 81: 1549–1557

    PubMed  Google Scholar 

  88. Karagiannidis C et al. (2004) Glucocorticoids upregulate FOXP3 expression and regulatory T cells in asthma. J Allergy Clin Immunol 114: 1425–1433

    CAS  PubMed  Google Scholar 

  89. Chen X et al. (2006) Glucocorticoid amplifies IL-2-dependent expansion of functional FoxP3(+)CD4(+)CD25(+) T regulatory cells in vivo and enhances their capacity to suppress EAE. Eur J Immunol 36: 2139–2149

    CAS  PubMed  Google Scholar 

  90. Barrat FJ et al. (2002) In vitro generation of interleukin 10-producing regulatory CD4(+) T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J Exp Med 195: 603–616

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Emmer PM et al. (2006) Dendritic cells activated by lipopolysaccharide after dexamethasone treatment induce donor-specific allograft hyporesponsiveness. Transplantation 81: 1451–1459

    CAS  PubMed  Google Scholar 

  92. Gregori S et al. (2001) Regulatory T cells induced by 1 alpha,25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance. J Immunol 167: 1945–1953

    CAS  PubMed  Google Scholar 

  93. Pedersen AE et al. (2004) Induction of regulatory dendritic cells by dexamethasone and 1alpha,25-Dihydroxyvitamin D(3). Immunol Lett 91: 63–69

    CAS  PubMed  Google Scholar 

  94. Mueller XM (2004) Drug immunosuppression therapy for adult heart transplantation. Part 1: immune response to allograft and mechanism of action of immunosuppressants. Ann Thorac Surg 77: 354–362

    PubMed  Google Scholar 

  95. Segundo DS et al. (2006) Calcineurin inhibitors, but not rapamycin, reduce percentages of CD4+CD25+FOXP3+ regulatory T cells in renal transplant recipients. Transplantation 82: 550–557

    PubMed  Google Scholar 

  96. Keever-Taylor CA et al. (2007) Rapamycin enriches for CD4(+) CD25(+) CD27(+) Foxp3(+) regulatory T cells in ex vivo-expanded CD25-enriched products from healthy donors and patients with multiple sclerosis. Cytotherapy 9: 144–157

    CAS  PubMed  Google Scholar 

  97. Strauss G et al. (2002) Induction of apoptosis and modulation of activation and effector function in T cells by immunosuppressive drugs. Clin Exp Immunol 128: 255–266

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Strauss L et al. (2007) Selective survival of naturally occurring human CD4+CD25+Foxp3+ regulatory T cells cultured with rapamycin. J Immunol 178: 320–329

    CAS  PubMed  Google Scholar 

  99. Coenen JJ et al. (2007) Rapamycin, not cyclosporine, permits thymic generation and peripheral preservation of CD4+ CD25+ FoxP3+ T cells. Bone Marrow Transplant 39: 537–545

    CAS  PubMed  Google Scholar 

  100. Battaglia M et al. (2006) Rapamycin and interleukin-10 treatment induces T regulatory type 1 cells that mediate antigen-specific transplantation tolerance. Diabetes 55: 40–49

    CAS  PubMed  Google Scholar 

  101. Hirose R et al. (2000) Experience with daclizumab in liver transplantation: renal transplant dosing without calcineurin inhibitors is insufficient to prevent acute rejection in liver transplantation. Transplantation 69: 307–311

    CAS  PubMed  Google Scholar 

  102. Calmus Y et al. (2002) Immunoprophylaxis with basiliximab, a chimeric anti-interleukin-2 receptor monoclonal antibody, in combination with azathioprine-containing triple therapy in liver transplant recipients. Liver Transpl 8: 123–131

    PubMed  Google Scholar 

  103. Baan CC et al. (2005) Differential effect of calcineurin inhibitors, anti-CD25 antibodies and rapamycin on the induction of FOXP3 in human T cells. Transplantation 80: 110–117

    CAS  PubMed  Google Scholar 

  104. Kreijveld E et al. (2007) Following anti-CD25 treatment, a functional CD4+CD25+ regulatory T-cell pool is present in renal transplant recipients. Am J Transplant 7: 249–255

    CAS  PubMed  Google Scholar 

  105. Vlad G et al. (2007) Anti-CD25 treatment and FOXP3-positive regulatory T cells in heart transplantation. Transpl Immunol 18: 13–21

    CAS  PubMed  Google Scholar 

  106. Tryphonopoulos P et al. (2005) The impact of Campath 1H induction in adult liver allotransplantation. Transplant Proc 37: 1203–1204

    CAS  PubMed  Google Scholar 

  107. Kirsch BM et al. (2006) Alemtuzumab (Campath-1H) induction therapy and dendritic cells: impact on peripheral dendritic cell repertoire in renal allograft recipients. Transpl Immunol 16: 254–257

    CAS  PubMed  Google Scholar 

  108. Hoffmann P et al. (2004) Large-scale in vitro expansion of polyclonal human CD4(+)CD25high regulatory T cells. Blood 104: 895–903

    CAS  PubMed  Google Scholar 

  109. Fujio K et al. (2007) T cell receptor gene therapy for autoimmune diseases. Ann N Y Acad Sci 1110: 222–232

    CAS  PubMed  Google Scholar 

  110. Hubscher SG (2006) Transplantation pathology. Semin Diagn Pathol 23: 170–181

    PubMed  Google Scholar 

  111. Horoldt BS et al. (2006) Does the Banff rejection activity index predict outcome in patients with early acute cellular rejection following liver transplantation. Liver Transpl 12: 1144–1151

    PubMed  Google Scholar 

  112. Demetris AJ et al. (2006) Liver biopsy interpretation for causes of late liver allograft dysfunction. Hepatology 44: 489–501

    PubMed  Google Scholar 

  113. Demetris A et al. (2000) Update of the International Banff Schema for Liver Allograft Rejection: Working Recommendations for the Histopathologic Staging and Reporting of Chronic Rejection. Hepatology 31: 792–799

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The help and constructive criticism of Professor Kathryn Wood in the preparation of the manuscript is gratefully acknowledged. We are also indebted to Professor David Adams and Dr Simon Afford at the University of Birmingham whose work in this field has formed the basis of many of the concepts discussed in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M Neuberger.

Ethics declarations

Competing interests

James M Neuberger has received speaker support from Hoffmann-La Roche, Novartis and Astellas, and is a consultant for Bristol-Myers. Bertus Eksteen declared no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eksteen, B., Neuberger, J. Mechanisms of Disease: the evolving understanding of liver allograft rejection. Nat Rev Gastroenterol Hepatol 5, 209–219 (2008). https://doi.org/10.1038/ncpgasthep1070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpgasthep1070

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing