Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Technology Insight: in vitro culture of spermatogonial stem cells and their potential therapeutic uses

Abstract

Male germline stem cells—spermatogonial stem cells (SSCs)—self-renew and produce large numbers of differentiating germ cells that become spermatozoa throughout postnatal life and transmit genetic information to the next generation. SSCs are the only germline stem cells in adults, because all female germline stem cells cease proliferation before birth. In this article, we first summarize development of SSCs, and then the relation of SSCs to somatic stem cells in tissues and pluripotent stem cells in vitro, such as embryonic stem cells. Next, we describe a transplantation technique in which donor testis cells from a fertile male can be transplanted to the testes of an infertile male where they re-establish spermatogenesis and restore fertility. The transplantation technique has been used to study the biology of SSCs, which made possible the identification of external factors that support in vitro self-renewal and proliferation of mouse and rat SSCs. Since SSCs of all mammalian species examined, including human, can replicate in mouse seminiferous tubules following transplantation, the growth factors required for SSC self-renewal are probably conserved among mammalian species. Culture techniques should therefore soon be available for human SSCs. In the final section, we discuss current and potential approaches for using the transplantation technique and in vitro culture of SSCs in human medicine. Because assisted reproductive techniques to fertilize oocytes with round or elongated spermatids are available, clinical use of cultured human SSCs will be greatly facilitated by development of techniques for in vitro differentiation of SSCs to mature germ cells.

Key Points

  • Spermatogonial stem cells are the only cells in postnatal mammals that undergo self-renewal and transmit genes to subsequent generations

  • In vitro growth-factor requirements for mouse spermatogonial stem cells have been identified using defined culture conditions

  • Because extrinsic factors for self-renewal of spermatogonial stem cells appear to be conserved among many mammalian species, including humans, in vitro culture techniques for human spermatogonial stem cell will probably be developed in the near future

  • Spermatogonial stem-cell transplantation could be used to restore fertility in men following chemotherapy or radiation treatment

  • Development of techniques for the in vitro differentiation of spermatogonial stem cells to functional spermatozoa is a crucial step for the treatment of infertility or germline gene therapy

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lineage development of somatic and germline stem cells in vivo and pluripotent stem cells in vitro
Figure 2: Procedure for testis-cell transplantation as developed in the mouse
Figure 3: In vitro proliferation of mouse spermatogonial stem cells
Figure 4: Germline stem-cell therapy

Similar content being viewed by others

References

  1. Brinster RL and Zimmermann JW (1994) Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci USA 91: 11298–11302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brinster RL and Avarbock MR (1994) Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci USA 91: 11303–11307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kubota H et al. (2004) Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci USA 101: 16489–16494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Radford J et al. (1999) Fertility after treatment for cancer. Questions remain over ways of preserving ovarian and testicular tissue. BMJ 319: 935–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Radford J (2003) Restoration of fertility after treatment for cancer. Horm Res 59 (Suppl 1): 21–23

    CAS  PubMed  Google Scholar 

  6. Barzon L et al. (2000) New perspectives for gene therapy in endocrinology. Eur J Endocrinol 143: 447–466

    Article  CAS  PubMed  Google Scholar 

  7. Nagy A et al. (2003) Manipulating the Mouse Embryo, A Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press

    Google Scholar 

  8. Potten CS and Morris RJ (1988) Epithelial stem cells in vivo. J Cell Sci Suppl 10: 45–62

    Article  CAS  PubMed  Google Scholar 

  9. Reid LM (1990) Stem cell biology, hormone/matrix synergies and liver differentiation. Curr Opin Cell Biol 2: 121–130

    Article  CAS  PubMed  Google Scholar 

  10. Tam PP and Zhou SX (1996) The allocation of epiblast cells to ectodermal and germ-line lineages is influenced by the position of the cells in the gastrulating mouse embryo. Dev Biol 178: 124–132

    Article  CAS  PubMed  Google Scholar 

  11. McLaren A (2003) Primordial germ cells in the mouse. Dev Biol 262: 1–15

    Article  CAS  PubMed  Google Scholar 

  12. Johnson J et al. (2004) Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 428: 145–150

    Article  CAS  PubMed  Google Scholar 

  13. Johnson J et al. (2005) Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 122: 303–315

    Article  CAS  PubMed  Google Scholar 

  14. Telfer EE et al. (2005) On regenerating the ovary and generating controversy. Cell 122: 821–822

    Article  CAS  PubMed  Google Scholar 

  15. de Rooij DG (1998) Stem cells in the testis. Int J Exp Pathol 79: 67–80

    Article  CAS  PubMed  Google Scholar 

  16. Orwig KE et al. (2002) Male germ-line stem cell potential is predicted by morphology of cells in neonatal rat testes. Proc Natl Acad Sci USA 99: 11706–11711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Holdcraft RW and Braun RE (2004) Hormonal regulation of spermatogenesis. Int J Androl 27: 335–342

    Article  CAS  PubMed  Google Scholar 

  18. Meistrich ML and van Beek MEAB (1993) Spermatogonial stem cells. In Cell and Molecular Biology of the Testis, 266–295 (Eds Desjardins C and Ewing LL) New York: Oxford University Press

    Google Scholar 

  19. Brinster RL (2002) Germline stem cell transplantation and transgenesis. Science 296: 2174–2176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Evans MJ and Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292: 154–156

    Article  CAS  PubMed  Google Scholar 

  21. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78: 7634–7638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thomson JA et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147

    Article  CAS  PubMed  Google Scholar 

  23. Smith AG (2001) Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 17: 435–462

    Article  CAS  PubMed  Google Scholar 

  24. Matsui Y et al. (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70: 841–847

    Article  CAS  PubMed  Google Scholar 

  25. Resnick JL et al. (1992) Long-term proliferation of mouse primordial germ cells in culture. Nature 359: 550–551

    Article  CAS  PubMed  Google Scholar 

  26. Shamblott MJ et al. (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA 95: 13726–13731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kanatsu-Shinohara M et al. (2004) Generation of pluripotent stem cells from neonatal mouse testis. Cell 119: 1001–1012

    Article  CAS  PubMed  Google Scholar 

  28. Harvey M et al. (1993) Genetic background alters the spectrum of tumors that develop in p53-deficient mice. FASEB J 7: 938–943

    Article  CAS  PubMed  Google Scholar 

  29. Stevens LC (1983) The origin and development of testicular, ovarian, and embryo-derived teratomas. In Teratocarcinoma Stem Cells, 23–36 (Eds Silver LM et al.) Cold Spring Harbor: Cold Spring Harbor Laboratory Press

    Google Scholar 

  30. Bradley A et al. (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309: 255–256

    Article  CAS  PubMed  Google Scholar 

  31. Labosky PA et al. (1994) Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. Development 120: 3197–3204

    Article  CAS  PubMed  Google Scholar 

  32. Ogawa T et al. (1997) Transplantation of testis germinal cells into mouse seminiferous tubules. Int J Dev Biol 41: 111–122

    CAS  PubMed  Google Scholar 

  33. Ogawa T et al. (1999) Recipient preparation is critical for spermatogonial transplantation in the rat. Tissue Cell 31: 461–472

    Article  CAS  PubMed  Google Scholar 

  34. Honaramooz A et al. (2002) Germ cell transplantation in pigs. Biol Reprod 66: 21–28

    Article  CAS  PubMed  Google Scholar 

  35. Honaramooz A et al. (2003) Germ cell transplantation in goats. Mol Reprod Dev 64: 422–428

    Article  CAS  PubMed  Google Scholar 

  36. Izadyar F et al. (2003) Autologous and homologous transplantation of bovine spermatogonial stem cells. Reproduction 126: 765–774

    Article  CAS  PubMed  Google Scholar 

  37. Oatley JM et al. (2005) Changes in spermatogenesis and endocrine function in the ram testis due to irradiation and active immunization against luteinizing hormone-releasing hormone. J Anim Sci 83: 604–612

    Article  CAS  PubMed  Google Scholar 

  38. Schlatt S et al. (2002) Germ cell transplantation into X-irradiated monkey testes. Hum Reprod 17: 55–62

    Article  CAS  PubMed  Google Scholar 

  39. Nagano MC (2003) Homing efficiency and proliferation kinetics of male germ line stem cells following transplantation in mice. Biol Reprod 69: 701–707

    Article  CAS  PubMed  Google Scholar 

  40. Ogawa T et al. (2003) Expansion of murine spermatogonial stem cells through serial transplantation. Biol Reprod 68: 316–322

    Article  CAS  PubMed  Google Scholar 

  41. Nagano M et al. (1999) Pattern and kinetics of mouse donor spermatogonial stem cell colonization in recipient testes. Biol Reprod 60: 1429–1436

    Article  CAS  PubMed  Google Scholar 

  42. Dobrinski I et al. (1999) Computer assisted image analysis to assess colonization of recipient seminiferous tubules by spermatogonial stem cells from transgenic donor mice. Mol Reprod Dev 53: 142–148

    Article  CAS  PubMed  Google Scholar 

  43. Zhang X et al. (2003) Genetic analysis of the clonal origin of regenerating mouse spermatogenesis following transplantation. Biol Reprod 69: 1872–1878

    Article  CAS  PubMed  Google Scholar 

  44. Ogawa T et al. (2000) Transplantation of male germ line stem cells restores fertility in infertile mice. Nat Med 6: 29–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Till JE and McCulloch E (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14: 213–222

    Article  CAS  PubMed  Google Scholar 

  46. Blanpain C et al. (2004) Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118: 635–648

    Article  CAS  PubMed  Google Scholar 

  47. Morrison SJ et al. (1997) Regulatory mechanisms in stem cell biology. Cell 88: 287–298

    Article  CAS  PubMed  Google Scholar 

  48. Tegelenbosch RA and de Rooij DG (1993) A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat Res 290: 193–200

    Article  CAS  PubMed  Google Scholar 

  49. Shinohara T et al. (1999) β1- and α6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci USA 96: 5504–5509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shinohara T et al. (2000) Spermatogonial stem cell enrichment by multiparameter selection of mouse testis cells. Proc Natl Acad Sci USA 97: 8346–8351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kubota H et al. (2003) Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci USA 100: 6487–6492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kubota H et al. (2004) Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol Reprod 71: 722–731

    Article  CAS  PubMed  Google Scholar 

  53. Ryu BY et al. (2004) Phenotypic and functional characteristics of spermatogonial stem cells in rats. Dev Biol 274: 158–170

    Article  CAS  PubMed  Google Scholar 

  54. Russell LD et al. (1990) Histological and Histopathological Evaluation of the Testis. Clearwater: Cache River Press

    Google Scholar 

  55. Clouthier DE et al. (1996) Rat spermatogenesis in mouse testis. Nature 381: 418–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dobrinski I et al. (1999) Transplantation of germ cells from rabbits and dogs into mouse testes. Biol Reprod 61: 1331–1339

    Article  CAS  PubMed  Google Scholar 

  57. Dobrinski I et al. (2000) Germ cell transplantation from large domestic animals into mouse testes. Mol Reprod Dev 57: 270–279

    Article  CAS  PubMed  Google Scholar 

  58. Oatley JM et al. (2004) Biological activity of cryopreserved bovine spermatogonial stem cells during in vitro culture. Biol Reprod 71: 942–947

    Article  CAS  PubMed  Google Scholar 

  59. Nagano M et al. (2001) Primate spermatogonial stem cells colonize mouse testes. Biol Reprod 64: 1409–1416

    Article  CAS  PubMed  Google Scholar 

  60. Nagano M et al. (2002) Long-term survival of human spermatogonial stem cells in mouse testes. Fertil Steril 78: 1225–1233

    Article  PubMed  Google Scholar 

  61. Kanatsu-Shinohara M et al. (2003) Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod 69: 612–616

    Article  CAS  PubMed  Google Scholar 

  62. Nagano M et al. (2003) Maintenance of mouse male germ line stem cells in vitro. Biol Reprod 68: 2207–2214

    Article  CAS  PubMed  Google Scholar 

  63. Kubota H and Reid LM (2000) Clonogenic hepatoblasts, common precursors for hepatocytic and biliary lineages, are lacking classical major histocompatibility complex class I antigen. Proc Natl Acad Sci USA 97: 12132–12137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Barnes D and Sato G (1980) Serum-free cell culture: a unifying approach. Cell 22: 649–655

    Article  CAS  PubMed  Google Scholar 

  65. Chang HY et al. (2002) Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci USA 99: 12877–12882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Matzuk MM (2004) Germ-line immortality. Proc Natl Acad Sci USA 101: 16395–16396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ryu BY et al. (2005) Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat. Proc Natl Acad Sci USA 102: 14302–14307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Avarbock MR et al. (1996) Reconstitution of spermatogenesis from frozen spermatogonial stem cells. Nat Med 2: 693–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Blackhall FH et al. (2002) Semen cryopreservation, utilisation and reproductive outcome in men treated for Hodgkin's disease. Br J Cancer 87: 381–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jahnukainen K et al. (2001) Intratesticular transplantation of testicular cells from leukemic rats causes transmission of leukemia. Cancer Research 61: 706–710

    CAS  PubMed  Google Scholar 

  71. Fujita K et al. (2005) Transplantation of spermatogonial stem cells isolated from leukemic mice restores fertility without inducing leukemia. J Clin Invest 115: 1855–1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Geijsen N et al. (2004) Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427: 148–154

    Article  CAS  PubMed  Google Scholar 

  73. Rideout WM III et al. (2002) Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109: 17–27

    Article  CAS  PubMed  Google Scholar 

  74. Kolb AF et al. (2005) Site-directed genome modification: nucleic acid and protein modules for targeted integration and gene correction. Trends Biotechnol 23: 399–406

    Article  CAS  PubMed  Google Scholar 

  75. Urnov FD et al. (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435: 646–651

    Article  CAS  PubMed  Google Scholar 

  76. Shinohara T et al. (2000) Functional analysis of spermatogonial stem cells in Steel and cryptorchid infertile mouse models. Dev Biol 220: 401–411

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jon Oatley for helpful comments on the manuscript and James Hayden for assistance in developing the figures. Financial support for the research was from the National Institute of Child Health and Human Development Grant 044445; and the Robert J Kleberg Jr, and Helen C Kleberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph L Brinster.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubota, H., Brinster, R. Technology Insight: in vitro culture of spermatogonial stem cells and their potential therapeutic uses. Nat Rev Endocrinol 2, 99–108 (2006). https://doi.org/10.1038/ncpendmet0098

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpendmet0098

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing