Article

Microlens arrays in the complex visual system of Cretaceous echinoderms

  • Nature Communications 5, Article number: 3576 (2014)
  • doi:10.1038/ncomms4576
  • Download Citation
Received:
Accepted:
Published online:

Abstract

It has long been assumed that photosensitivity in echinoderms is mainly related to diffuse photoreception mediated by photosensitive regions embedded within the dermis. Recent studies, however, have shown that some extant echinoderms may also display modified ossicles with microlenses acting as sophisticated photosensory organs. Thanks to their remarkable properties, these calcitic microlenses serve as an inspiration for scientists across various disciplines among which bio-inspired engineering. However, the evolutionary origins of these microlenses remain obscure. Here we provide microstructural evidence showing that analogous spherical calcitic lenses had been acquired in some brittle stars and starfish of Poland by the Late Cretaceous (Campanian, ~79 Ma). Specimens from Poland described here had a highly developed visual system similar to that of modern forms. We suggest that such an optimization of echinoderm skeletons for both mechanical and optical purposes reflects escalation-related adaptation to increased predation pressure during the so-called Mesozoic Marine Revolution.

  • Purchase article full text and PDF:

    $32

    Buy now

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    & Fine structure of the ocelli of a synaptid holothurian, Opheodesoma spectabilis, and the effects of light and darkness. Zoomorphologie 90, 1–17 (1978).

  2. 2.

    On the nervous system of the starfish Marthasterias glacialis. Phil. Trans. R. Soc. Lond. B 227, 111–173 (1937).

  3. 3.

    & Visual navigation in starfish: first evidence for the use of vision and eyes in starfish. Proc. R. Soc. B 281, 2013–3011 (2014).

  4. 4.

    & The Photosensitivity of the sea echinoid Diadema antillarum Phillipi: responses to increases in light intensity. Proc. Zool. Soc. Lond. 133, 67–71 (1958).

  5. 5.

    in Physiology of Echinodermata (ed. Boolootian, R. A.) (John Wiley & Sons, 1966).

  6. 6.

    in Physiology of Echinodermata (ed. Boolootian, R. A.) (John Wiley & Sons, 1966.

  7. 7.

    & Neurophysiological studies on photic responses in Ophiura ophiura. Comp. Biochem. Physiol. A 80, 11–16 (1985).

  8. 8.

    & Spatial vision in the Echinoid genus Echinometra. J. Exp. Biol. 207, 4249–4253 (2004).

  9. 9.

    , , , & Sea urchin tube feet are photosensory organs that express a rhabdomeric-like opsin and PAX6. Proc. R. Soc. B 278, 3371–3379 (2011).

  10. 10.

    , , , & Unique system of photoreceptors in sea urchin tube feet. Proc. Natl Acad. Sci. USA 108, 8367–8372 (2011).

  11. 11.

    , , , & Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 412, 819–822 (2001).

  12. 12.

    & Designing efficient microlens arrays: lessons from nature. J. Mater. Chem. 14, 2066–2072 (2004).

  13. 13.

    & Ultrastructure des ossicules d’échinodermes à stéréome non perforé. in Echinoderm Research (eds De Ridder C., Dubois P., Lahaye M.-C. & Jangoux M.) 217–223 (Balkema, 1990).

  14. 14.

    A phylogeny of Iconaster and Glyphodiscus (Goniasteridae; Valvatida; Asteroidea) with descriptions of four new species. Zoosystema 27, 131–167 (2005).

  15. 15.

    inBudowa Geologiczna Polski—Mezozoik Wyd. Geol. (1973).

  16. 16.

    & Occurrence and paleoecological significance of lyssacinosid sponges in the Upper Cretaceous deposits of southern Poland. Facies 59, 763–777 (2013).

  17. 17.

    , , & in Annie V. Dhondt Memorial Volume (eds Steurbaut, E., Jagt, J. W. M. & Jagt-Yazykova, E. A.) (Bulletin de l’Institut royal des Sciences naturelles de Belgique, Sciences de la Terre, 2008).

  18. 18.

    Cretaceous Asteroidea and Ophiuroidea With a Special Reference to the Species Found in Denmark Vol. 2, 1–134 (Denmarks Geologiske Undersøgelse, 1950).

  19. 19.

    A new classification of Ophiuroidea: with description of genera and species. Proc. Acad. Nat. Sci. Philadelphia 67, 43–92 (1915).

  20. 20.

    A history of British starfish and other animals of the class Echinodermata 1–267John Van Voorst (1841).

  21. 21.

    Asteroidea (Echinodermata) from the Oxfordian (Late Jurassic) of Savigna, Départment [sic!] du Jura, France. Swiss J. Palaeontol. 130, 69–89 (2011).

  22. 22.

    , & Systematics and palaecology of middle Toarcian Asteroidea (Echinodermata) from the ‘Seuil du Poitou’, Western France. Geobios 37, 807–825 (2004).

  23. 23.

    Sea star ossicles from the Callovian black clays of the Łuków area, eastern Poland. Neues Jb. Geol. Paläont. Abh. 247, 147–160 (2008).

  24. 24.

    Trilobite eyes: calcified lenses in vivo. Science 179, 1007–1010 (1973).

  25. 25.

    & Trilobite eyes and the optics of Descartes and Huygens. Nature 254, 663–667 (1975).

  26. 26.

    , & Microstructure and growth of the lenses of schizochroal trilobite eyes. Palaeontology doi:10.1111/pala.12088 (2013).

  27. 27.

    , , , & Complexity and diversity of eyes in Early Cambrian ecosystems. Sci. Rep. 3, 2751 (2013).

  28. 28.

    , & The eyes of trilobites: the oldest preserved visual system. Arthropod Struct. Dev. 35, 247–259 (2006).

  29. 29.

    & Fine structure of the dorsal arm plate of Ophiocoma wendti (Echinodermata, Ophiuroidea). Zoomorphology 107, 261–272 (1987).

  30. 30.

    & 5th Arbeitstreffen deutschsprachiger Echinodermenforscher 31–32 (Stuttgart, Germany, 2013).

  31. 31.

    The Mesozoic marine revolution; evidence from snails, predators and grazers. Paleobiology 3, 245–258 (1977).

  32. 32.

    , & Increase of shell-crushing predation recorded in fossil shell fragmentation. Paleobiology 29, 520–526 (2003).

  33. 33.

    , & Predator-induced macroevolutionary trends in Mesozoic crinoids. Proc. Natl Acad. Sci. USA 109, 7004–7007 (2012).

  34. 34.

    Brittlestar color-change and phototaxis (Echinodermata: Ophiuroidea: Ophiocomidae). Mar. Ecol. 5, 379–401 (1984).

  35. 35.

    , & PAST: Paleontological software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).

Download references

Acknowledgements

This work was completed while the first author was a recipient of a grant from the Polish National Science Centre (NCN) Grant number DEC-2011/03/N/ST10/04798. We thank Professor Charles G Messing (Nova Southeastern University) for providing the specimen of extant brittle star.

Author information

Affiliations

  1. Department of Biogeology, Institute of Paleobiology, Polish Academy of Sciences, Twarda Street 51/55, 00-818 Warsaw, Poland

    • Przemysław Gorzelak
  2. Department of Palaeontology and Biostratigraphy, Faculty of Earth Sciences, University of Silesia, Będzińska Street 60, 41-200 Sosnowiec, Poland

    • Mariusz A. Salamon
    •  & Rafał Lach
  3. Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland

    • Michał Loba
  4. Dame du Lac 213, 3 rue Henri Barbusse, F-76300 Sotteville-lès-Rouen, France

    • Bruno Ferré

Authors

  1. Search for Przemysław Gorzelak in:

  2. Search for Mariusz A. Salamon in:

  3. Search for Rafał Lach in:

  4. Search for Michał Loba in:

  5. Search for Bruno Ferré in:

Contributions

M.A.S. and R.L. carried out the fieldwork and collected the specimens. P.G. conducted microstructural analyses. All authors contributed to the discussion and writing of the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Przemysław Gorzelak.

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.