Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Searching for a wrench to throw into the splicing machine

Many macromolecular complexes function as nanoscale machines performing important cellular jobs. However, their complex and dynamic natures pose challenges for detailed structure-function analysis. Small-molecule inhibitors, which can be identified by high-throughput screening, provide important leverage into the study of macromolecular assemblies by allowing researchers to capture transient intermediate states and probe important functional components.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative antibiotic wrenches used to study ribosomes at several key steps of translation elongation.
Figure 2: Many wrenches are needed to capture spliceosome intermediate complexes.

References

  1. Johnson, A. & O'Donnell, M. Annu. Rev. Biochem. 74, 283–315 (2005).

    Article  CAS  Google Scholar 

  2. Vale, R.D. J. Cell Biol. 163, 445–450 (2003).

    Article  CAS  Google Scholar 

  3. Lee, T.I. & Young, R.A. Annu. Rev. Genet. 34, 77–137 (2000).

    Article  CAS  Google Scholar 

  4. Frank, J. Three-Dimensional Electron Microscopy of Macromolecular Assemblies 1–317 (Academic, New York, 1996).

    Book  Google Scholar 

  5. Spahn, C.M. & Prescott, C.D. J. Mol. Med. 74, 423–439 (1996).

    Article  CAS  Google Scholar 

  6. Nierhaus, K.H. & Wittmann, H.G. Naturwissenschaften 67, 234–250 (1980).

    Article  CAS  Google Scholar 

  7. Traut, R.R. & Monro, R.E. J. Mol. Biol. 10, 63–72 (1964).

    Article  CAS  Google Scholar 

  8. Stark, H. et al. Nature 389, 403–406 (1997).

    Article  CAS  Google Scholar 

  9. Valle, M. et al. EMBO J. 21, 3557–3567 (2002).

    Article  CAS  Google Scholar 

  10. Fourmy, D., Recht, M.I., Blanchard, S.C. & Puglisi, J.D. Science 274, 1367–1371 (1996).

    Article  CAS  Google Scholar 

  11. Ermolenko, D.N. et al. Nat. Struct. Mol. Biol. 14, 493–497 (2007).

    Article  CAS  Google Scholar 

  12. Frank, J. & Agrawal, R.K. Nature 406, 318–322 (2000).

    Article  CAS  Google Scholar 

  13. Valle, M. et al. Cell 114, 123–134 (2003).

    Article  CAS  Google Scholar 

  14. Garza-Ramos, G., Xiong, L., Zhong, P. & Mankin, A. J. Bacteriol. 183, 6898–6907 (2001).

    Article  CAS  Google Scholar 

  15. Hansen, J.L. et al. Mol. Cell 10, 117–128 (2002).

    Article  CAS  Google Scholar 

  16. Schlunzen, F. et al. Nature 413, 814–821 (2001).

    Article  CAS  Google Scholar 

  17. Diaz, J.F., Menendez, M. & Andreu, J.M. Biochemistry 32, 10067–10077 (1993).

    Article  CAS  Google Scholar 

  18. Schiff, P.B., Fant, J. & Horwitz, S.B. Nature 277, 665–667 (1979).

    Article  CAS  Google Scholar 

  19. Nogales, E., Whittaker, M., Milligan, R.A. & Downing, K.H. Cell 96, 79–88 (1999).

    Article  CAS  Google Scholar 

  20. Wieland, T. & Faulstich, H. Experientia 47, 1186–1193 (1991).

    Article  CAS  Google Scholar 

  21. Bushnell, D.A., Cramer, P. & Kornberg, R.D. Proc. Natl. Acad. Sci. USA 99, 1218–1222 (2002).

    Article  CAS  Google Scholar 

  22. Shi, Y., Reddy, B. & Manley, J.L. Mol. Cell 23, 819–829 (2006).

    Article  CAS  Google Scholar 

  23. Soret, J. et al. Proc. Natl. Acad. Sci. USA 102, 8764–8769 (2005).

    Article  CAS  Google Scholar 

  24. Inglese, J. et al. Nat. Chem. Biol. 3, 466–479 (2007).

    Article  CAS  Google Scholar 

  25. Kaida, D. et al. Nat. Chem. Biol. 3, 576–583 (2007).

    Article  CAS  Google Scholar 

  26. Kotake, Y. et al. Nat. Chem. Biol. 3, 570–575 (2007).

    Article  CAS  Google Scholar 

  27. Straight, A.F. et al. Science 299, 1743–1747 (2003).

    Article  CAS  Google Scholar 

  28. Ruskin, B., Krainer, A.R., Maniatis, T. & Green, M.R. Cell 38, 317–331 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurica, M. Searching for a wrench to throw into the splicing machine. Nat Chem Biol 4, 3–6 (2008). https://doi.org/10.1038/nchembio0108-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio0108-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing