Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemical approaches to understanding O-GlcNAc glycosylation in the brain

Abstract

O-GlcNAc glycosylation is a unique, dynamic form of glycosylation found on intracellular proteins of all multicellular organisms. Studies suggest that O-GlcNAc represents a key regulatory modification in the brain, contributing to transcriptional regulation, neuronal communication and neurodegenerative disease. Recently, several new chemical tools have been developed to detect and study the modification, including chemoenzymatic tagging methods, quantitative proteomics strategies and small-molecule inhibitors of O-GlcNAc enzymes. Here we highlight some of the emerging roles for O-GlcNAc in the nervous system and describe how chemical tools have significantly advanced our understanding of the scope, functional significance and cellular dynamics of this modification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: O-GlcNAc glycosylation is the addition of β-N-acetylglucosamine to serine or threonine residues of proteins.
Figure 2: O-GlcNAc proteome from rodent brain tissue.
Figure 3: Strategy for chemically tagging O-GlcNAc proteins.
Figure 4: The BEMAD strategy for mapping glycosylation sites.
Figure 5: Small-molecule inhibitors of O-GlcNAc transferase (OGT) and β-N-acetylglucosaminidase (OGA).
Figure 6: Chemical tools for monitoring O-GlcNAc dynamics.

Similar content being viewed by others

References

  1. Torres, C.R. & Hart, G.W. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J. Biol. Chem. 259, 3308–3317 (1984).

    Article  CAS  PubMed  Google Scholar 

  2. Love, D.C. & Hanover, J.A. The hexosamine signaling pathway: deciphering the 'O-GlcNAc code'. Sci. STKE 2005, re13 (2005).

    Article  PubMed  Google Scholar 

  3. Roquemore, E.P., Chevrier, M.R., Cotter, R.J. & Hart, G.W. Dynamic O-GlcNAcylation of the small heat shock protein αB-crystallin. Biochemistry 35, 3578–3586 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Comer, F.I. & Hart, G.W. O-GlcNAc and the control of gene expression. Biochim. Biophys. Acta 1473, 161–171 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Zachara, N.E. & Hart, G.W. O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. Biochim. Biophys. Acta 1673, 13–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Fulop, N., Marchase, R.B. & Chatham, J.C. Role of protein O-linked N-acetyl-glucosamine in mediating cell function and survival in the cardiovascular system. Cardiovasc. Res. 73, 288–297 (2007).

    Article  PubMed  CAS  Google Scholar 

  7. Wells, L. & Hart, G.W. O-GlcNAc turns twenty: functional implications for post-translational modification of nuclear and cytosolic proteins with a sugar. FEBS Lett. 546, 154–158 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Wells, L., Whelan, S.A. & Hart, G.W. O-GlcNAc: a regulatory post-translational modification. Biochem. Biophys. Res. Commun. 302, 435–441 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Slawson, C. & Hart, G.W. Dynamic interplay between O-GlcNAc and O-phosphate: the sweet side of protein regulation. Curr. Opin. Struct. Biol. 13, 631–636 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Wells, L., Vosseller, K. & Hart, G.W. A role for N-acetylglucosamine as a nutrient sensor and mediator of insulin resistance. Cell. Mol. Life Sci. 60, 222–228 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Lefebvre, T. et al. Does O-GlcNAc play a role in neurodegenerative diseases? Expert Rev. Proteomics 2, 265–275 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Lefebvre, T., Caillet-Boudin, M.L., Buee, L., Delacourte, A. & Michalski, J.C. O-GlcNAc glycosylation and neurological disorders. Adv. Exp. Med. Biol. 535, 189–202 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Kreppel, L.K., Blomberg, M.A. & Hart, G.W. Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J. Biol. Chem. 272, 9308–9315 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Gao, Y., Wells, L., Comer, F.I., Parker, G.J. & Hart, G.W. Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic β-N-acetylglucosaminidase from human brain. J. Biol. Chem. 276, 9838–9845 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Akimoto, Y. et al. Localization of the O-GlcNAc transferase and O-GlcNAc-modified proteins in rat cerebellar cortex. Brain Res. 966, 194–205 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Cole, R.N. & Hart, G.W. Cytosolic O-glycosylation is abundant in nerve terminals. J. Neurochem. 79, 1080–1089 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. O'Donnell, N., Zachara, N.E., Hart, G.W. & Marth, J.D. Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol. Cell. Biol. 24, 1680–1690 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lamarre-Vincent, N. & Hsieh-Wilson, L.C. Dynamic glycosylation of the transcription factor CREB: a potential role in gene regulation. J. Am. Chem. Soc. 125, 6612–6613 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Khidekel, N. et al. Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nat. Chem. Biol. 3, 339–348 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Griffith, L.S., Mathes, M. & Schmitz, B. β-Amyloid precursor protein is modified with O-linked N-acetylglucosamine. J. Neurosci. Res. 41, 270–278 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Griffith, L.S. & Schmitz, B. O-linked N-acetylglucosamine levels in cerebellar neurons respond reciprocally to pertubations of phosphorylation. Eur. J. Biochem. 262, 824–831 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Lazarus, B.D., Love, D.C. & Hanover, J.A. Recombinant O-GlcNAc transferase isoforms: identification of O-GlcNAcase, yes tyrosine kinase, and tau as isoform-specific substrates. Glycobiology 16, 415–421 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Kreppel, L.K. & Hart, G.W. Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. J. Biol. Chem. 274, 32015–32022 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Jinek, M. et al. The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin α. Nat. Struct. Mol. Biol. 11, 1001–1007 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Iyer, S.P., Akimoto, Y. & Hart, G.W. Identification and cloning of a novel family of coiled-coil domain proteins that interact with O-GlcNAc transferase. J. Biol. Chem. 278, 5399–5409 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Brickley, K., Smith, M.J., Beck, M. & Stephenson, F.A. GRIF-1 and OIP106, members of a novel gene family of coiled-coil domain proteins: association in vivo and in vitro with kinesin. J. Biol. Chem. 280, 14723–14732 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Stowers, R.S., Megeath, L.J., Gorska-Andrzejak, J., Meinertzhagen, I.A. & Schwarz, T.L. Axonal transport of mitochondria to synapses depends on Milton, a novel Drosophila protein. Neuron 36, 1063–1077 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Yang, X., Zhang, F. & Kudlow, J.E. Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: coupling protein O-GlcNAcylation to transcriptional repression. Cell 110, 69–80 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Wells, L., Kreppel, L.K., Comer, F.I., Wadzinski, B.E. & Hart, G.W. O-GlcNAc transferase is in a functional complex with protein phosphatase 1 catalytic subunits. J. Biol. Chem. 279, 38466–38470 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Wells, L. et al. Dynamic O-glycosylation of nuclear and cytosolic proteins: further characterization of the nucleocytoplasmic β-N-acetylglucosaminidase, O-GlcNAcase. J. Biol. Chem. 277, 1755–1761 (2002).

    Article  PubMed  Google Scholar 

  31. Toleman, C., Paterson, A.J., Whisenhunt, T.R. & Kudlow, J.E. Characterization of the histone acetyltransferase (HAT) domain of a bifunctional protein with activable O-GlcNAcase and HAT activities. J. Biol. Chem. 279, 53665–53673 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Comtesse, N., Maldener, E. & Meese, E. Identification of a nuclear variant of MGEA5, a cytoplasmic hyaluronidase and a β-N-acetylglucosaminidase. Biochem. Biophys. Res. Commun. 283, 634–640 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Kelly, W.G. & Hart, G.W. Glycosylation of chromosomal proteins: localization of O-linked N-acetylglucosamine in Drosophila chromatin. Cell 57, 243–251 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Jackson, S.P. & Tjian, R. O-glycosylation of eukaryotic transcription factors: implications for mechanisms of transcriptional regulation. Cell 55, 125–133 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. Zachara, N.E. & Hart, G.W. Cell signaling, the essential role of O-GlcNAc! Biochim. Biophys. Acta 1761, 599–617 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Yang, X. et al. O-linkage of N-acetylglucosamine to Sp1 activation domain inhibits its transcriptional capability. Proc. Natl. Acad. Sci. USA 98, 6611–6616 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Roos, M.D., Su, K., Baker, J.R. & Kudlow, J.E. O glycosylation of an Sp1-derived peptide blocks known Sp1 protein interactions. Mol. Cell. Biol. 17, 6472–6480 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gewinner, C. et al. The coactivator of transcription CREB-binding protein interacts preferentially with the glycosylated form of Stat5. J. Biol. Chem. 279, 3563–3572 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Yang, W.H. et al. Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nat. Cell Biol. 8, 1074–1083 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Carlezon, W.A. Jr, Duman, R.S. & Nestler, E.J. The many faces of CREB. Trends Neurosci. 28, 436–445 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Mayr, B. & Montminy, M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell Biol. 2, 599–609 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Levkovitz, Y. & Baraban, J.M. A dominant negative inhibitor of the Egr family of transcription regulatory factors suppresses cerebellar granule cell apoptosis by blocking c-Jun activation. J. Neurosci. 21, 5893–5901 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jones, M.W. et al. A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nat. Neurosci. 4, 289–296 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Khidekel, N., Ficarro, S.B., Peters, E.C. & Hsieh-Wilson, L.C. Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from the brain. Proc. Natl. Acad. Sci. USA 101, 13132–13137 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wilson, M. & Koopman, P. Matching SOX: partner proteins and co-factors of the SOX family of transcriptional regulators. Curr. Opin. Genet. Dev. 12, 441–446 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Rodda, D.J. et al. Transcriptional regulation of nanog by OCT4 and SOX2. J. Biol. Chem. 280, 24731–24737 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Komitova, M. & Eriksson, P.S. Sox-2 is expressed by neural progenitors and astroglia in the adult rat brain. Neurosci. Lett. 369, 24–27 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Collart, M.A. Global control of gene expression in yeast by the Ccr4–Not complex. Gene 313, 1–16 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Vosseller, K. et al. O-linked N-acetylglucosamine proteomics of postsynaptic density preparations using lectin weak affinity chromatography and mass spectrometry. Mol. Cell. Proteomics 5, 923–934 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Wells, L. et al. Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol. Cell. Proteomics 1, 791–804 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Deller, T. et al. Synaptopodin-deficient mice lack a spine apparatus and show deficits in synaptic plasticity. Proc. Natl. Acad. Sci. USA 100, 10494–10499 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vazquez, L.E., Chen, H.J., Sokolova, I., Knuesel, I. & Kennedy, M.B. SynGAP regulates spine formation. J. Neurosci. 24, 8862–8872 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sala, C. et al. Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 31, 115–130 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Israely, I. et al. Deletion of the neuron-specific protein δ-catenin leads to severe cognitive and synaptic dysfunction. Curr. Biol. 14, 1657–1663 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Murphy, J.E., Hanover, J.A., Froehlich, M., DuBois, G. & Keen, J.H. Clathrin assembly protein AP-3 is phosphorylated and glycosylated on the 50-kDa structural domain. J. Biol. Chem. 269, 21346–21352 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Yoshimura, T. et al. GSK-3β regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 120, 137–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Arnold, C.S. et al. The microtubule-associated protein tau is extensively modified with O-linked N-acetylglucosamine. J. Biol. Chem. 271, 28741–28744 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Dong, D.L., Xu, Z.S., Hart, G.W. & Cleveland, D.W. Cytoplasmic O-GlcNAc modification of the head domain and the KSP repeat motif of the neurofilament protein neurofilament-H. J. Biol. Chem. 271, 20845–20852 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Griffith, L.S. & Schmitz, B. O-linked N-acetylglucosamine is upregulated in Alzheimer brains. Biochem. Biophys. Res. Commun. 213, 424–431 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Liu, F., Iqbal, K., Grundke-Iqbal, I., Hart, G.W. & Gong, C.X. O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease. Proc. Natl. Acad. Sci. USA 101, 10804–10809 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ludemann, N. et al. O-glycosylation of the tail domain of neurofilament protein M in human neurons and in spinal cord tissue of a rat model of amyotrophic lateral sclerosis (ALS). J. Biol. Chem. 280, 31648–31658 (2005).

    Article  PubMed  CAS  Google Scholar 

  62. Van Tine, B.A., Patterson, A.J. & Kudlow, J.E. Assignment of N-acetyl-D-glucosaminidase (Mgea5) to rat chromosome 1q5 by tyramide fluorescence in situ hybridization (T-FISH): synteny between rat, mouse and human with insulin degradation enzyme (IDE). Cytogenet. Genome Res. 103, 202B (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Nolte, D. & Muller, U. Human O-GlcNAc transferase (OGT): genomic structure, analysis of splice variants, fine mapping in Xq13.1. Mamm. Genome 13, 62–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Ballatore, C., Lee, V.M. & Trojanowski, J.Q. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat. Rev. Neurosci. 8, 663–672 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Robertson, L.A., Moya, K.L. & Breen, K.C. The potential role of tau protein O-glycosylation in Alzheimer's disease. J. Alzheimers Dis. 6, 489–495 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Lefebvre, T. et al. Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of Tau proteins–a role in nuclear localization. Biochim. Biophys. Acta 1619, 167–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Alexander, G.E., Chen, K., Pietrini, P., Rapoport, S.I. & Reiman, E.M. Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in Alzheimer's disease treatment studies. Am. J. Psychiatry 159, 738–745 (2002).

    Article  PubMed  Google Scholar 

  68. Li, X., Lu, F., Wang, J.Z. & Gong, C.X. Concurrent alterations of O-GlcNAcylation and phosphorylation of tau in mouse brains during fasting. Eur. J. Neurosci. 23, 2078–2086 (2006).

    Article  PubMed  Google Scholar 

  69. Zhang, F. et al. O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell 115, 715–725 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Liu, K. et al. Accumulation of protein O-GlcNAc modification inhibits proteasomes in the brain and coincides with neuronal apoptosis in brain areas with high O-GlcNAc metabolism. J. Neurochem. 89, 1044–1055 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Ciechanover, A. & Brundin, P. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40, 427–446 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Golks, A., Tran, T.T., Goetschy, J.F. & Guerini, D. Requirement for O-linked N-acetylglucosaminyltransferase in lymphocytes activation. EMBO J. 26, 4368–4379 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu, K., Paterson, A.J., Chin, E. & Kudlow, J.E. Glucose stimulates protein modification by O-linked GlcNAc in pancreatic β cells: linkage of O-linked GlcNAc to β cell death. Proc. Natl. Acad. Sci. USA 97, 2820–2825 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rex-Mathes, M. et al. O-GlcNAc expression in developing and ageing mouse brain. Biochimie 83, 583–590 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Marshall, S., Bacote, V. & Traxinger, R.R. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J. Biol. Chem. 266, 4706–4712 (1991).

    Article  CAS  PubMed  Google Scholar 

  76. Haltiwanger, R.S., Blomberg, M.A. & Hart, G.W. Glycosylation of nuclear and cytoplasmic proteins. Purification and characterization of a uridine diphospho-N-acetylglucosamine:polypeptide β-N-acetylglucosaminyltransferase. J. Biol. Chem. 267, 9005–9013 (1992).

    Article  CAS  PubMed  Google Scholar 

  77. Zachara, N.E. et al. Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J. Biol. Chem. 279, 30133–30142 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Greengard, P., Valtorta, F., Czernik, A.J. & Benfenati, F. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259, 780–785 (1993).

    Article  CAS  PubMed  Google Scholar 

  79. Soderling, T.R. CaM-kinases: modulators of synaptic plasticity. Curr. Opin. Neurobiol. 10, 375–380 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Colbran, R.J. Protein phosphatases and calcium/calmodulin-dependent protein kinase II-dependent synaptic plasticity. J. Neurosci. 24, 8404–8409 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cieniewski-Bernard, C. et al. Identification of O-linked N-acetylglucosamine proteins in rat skeletal muscle using two-dimensional gel electrophoresis and mass spectrometry. Mol. Cell. Proteomics 3, 577–585 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Roquemore, E.P., Chou, T.Y. & Hart, G.W. Detection of O-linked N-acetylglucosamine (O-GlcNAc) on cytoplasmic and nuclear proteins. Methods Enzymol. 230, 443–460 (1994).

    Article  CAS  PubMed  Google Scholar 

  83. Khidekel, N. et al. A chemoenzymatic approach toward the rapid and sensitive detection of O-GlcNAc posttranslational modifications. J. Am. Chem. Soc. 125, 16162–16163 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Ramakrishnan, B. & Qasba, P.K. Structure-based design of β1,4-galactosyltransferase I (β4Gal-T1) with equally efficient N-acetylgalactosaminyltransferase activity: point mutation broadens β4Gal-T1 donor specificity. J. Biol. Chem. 277, 20833–20839 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Tai, H.C., Khidekel, N., Ficarro, S.B., Peters, E.C. & Hsieh-Wilson, L.C. Parallel identification of O-GlcNAc-modified proteins from cell lysates. J. Am. Chem. Soc. 126, 10500–10501 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Hsieh-Wilson, L.C., Khidekel, N., Arndt, S.E. & Tai, H.-C. Method and compositions for the detection of protein glycosylation. US patent application 20050130235 (2005).

  87. Vocadlo, D.J., Hang, H.C., Kim, E.J., Hanover, J.A. & Bertozzi, C.R. A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc. Natl. Acad. Sci. USA 100, 9116–9121 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang, Z., Pandey, A. & Hart, G.W. Dynamic interplay between O-linked N-acetylglucos-aminylation and glycogen synthase kinase-3-dependent phosphorylation. Mol. Cell. Proteomics 6, 1365–1379 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Syka, J.E., Coon, J.J., Schroeder, M.J., Shabanowitz, J. & Hunt, D.F. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. USA 101, 9528–9533 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nandi, A. et al. Global identification of O-GlcNAc-modified proteins. Anal. Chem. 78, 452–458 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Shafi, R. et al. The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc. Natl. Acad. Sci. USA 97, 5735–5739 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dauphinee, S.M., Ma, M. & Too, C.K. Role of O-linked β-N-acetylglucosamine modification in the subcellular distribution of α4 phosphoprotein and Sp1 in rat lymphoma cells. J. Cell. Biochem. 96, 579–588 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Forsythe, M.E. et al. Caenorhabditis elegans ortholog of a diabetes susceptibility locus: oga-1 (O-GlcNAcase) knockout impacts O-GlcNAc cycling, metabolism, and dauer. Proc. Natl. Acad. Sci. USA 103, 11952–11957 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lee, T.N., Alborn, W.E., Knierman, M.D. & Konrad, R.J. Alloxan is an inhibitor of O-GlcNAc-selective N-acetyl-β-D-glucosaminidase. Biochem. Biophys. Res. Commun. 350, 1038–1043 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Meglasson, M.D., Burch, P.T., Berner, D.K., Najafi, H. & Matschinsky, F.M. Identification of glucokinase as an alloxan-sensitive glucose sensor of the pancreatic β-cell. Diabetes 35, 1163–1173 (1986).

    Article  CAS  PubMed  Google Scholar 

  96. Szkudelski, T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res. 50, 537–546 (2001).

    CAS  PubMed  Google Scholar 

  97. Gross, B.J., Kraybill, B.C. & Walker, S. Discovery of O-GlcNAc transferase inhibitors. J. Am. Chem. Soc. 127, 14588–14589 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Dehennaut, V. et al. O-linked N-acetylglucosaminyltransferase inhibition prevents G2/M transition in Xenopus laevis oocytes. J. Biol. Chem. 282, 12527–12536 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Kim, E.J., Perreira, M., Thomas, C.J. & Hanover, J.A. An O-GlcNAcase-specific inhibitor and substrate engineered by the extension of the N-acetyl moiety. J. Am. Chem. Soc. 128, 4234–4235 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Kim, E.J. et al. Distinctive inhibition of O-GlcNAcase isoforms by an α-GlcNAc thiolsulfonate. J. Am. Chem. Soc. 129, 14854–14855 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Macauley, M.S., Whitworth, G.E., Debowski, A.W., Chin, D. & Vocadlo, D.J. O-GlcNAcase uses substrate-assisted catalysis: kinetic analysis and development of highly selective mechanism-inspired inhibitors. J. Biol. Chem. 280, 25313–25322 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Knapp, S. et al. Tautomeric modification of GlcNAc-thiazoline. Org. Lett. 9, 2321–2324 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Stubbs, K.A., Zhang, N. & Vocadlo, D.J. A divergent synthesis of 2-acyl derivatives of PUGNAc yields selective inhibitors of O-GlcNAcase. Org. Biomol. Chem. 4, 839–845 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Dorfmueller, H.C. et al. GlcNAcstatin: a picomolar, selective O-GlcNAcase inhibitor that modulates intracellular O-GlcNAcylation levels. J. Am. Chem. Soc. 128, 16484–16485 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shanmugasundaram, B. et al. Inhibition of O-GlcNAcase by a gluco-configured nagstatin and a PUGNAc-imidazole hybrid inhibitor. Chem. Commun. (Camb.) 13, 4372–4374 (2006).

    Article  Google Scholar 

  106. Davis, B.G., Lloyd, R.C. & Jones, J.B. Controlled site-selective glycosylation of proteins by a combined site-directed mutagenesis and chemical modification approach. J. Org. Chem. 63, 9614–9615 (1998).

    Article  CAS  Google Scholar 

  107. Carrillo, L.D., Krishnamoorthy, L. & Mahal, L.K. A cellular FRET-based sensor for β-O-GlcNAc, a dynamic carbohydrate modification involved in signaling. J. Am. Chem. Soc. 128, 14768–14769 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Ong, S.E., Mittler, G. & Mann, M. Identifying and quantifying in vivo methylation sites by heavy methyl SILAC. Nat. Methods 1, 119–126 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Zhang, Z. et al. A new strategy for the synthesis of glycoproteins. Science 303, 371–373 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Shin, Y. et al. Fmoc-based synthesis of peptide-thioesters: application to the total chemical synthesis of a glycoprotein by native chemical ligation. J. Am. Chem. Soc. 121, 11684–11689 (1999).

    Article  CAS  Google Scholar 

  111. Schoof, H. et al. MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource based on the first complete plant genome. Nucleic Acids Res. 30, 91–93 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C.J. Rogers and H.E. Murrey for critical reading of the manuscript. This work was supported in part by grants from the US National Institutes of Health (RO1 GM084724 and F31 NS056525-02 to J.E.R.) and the US National Science Foundation (CHE-0239861).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda C Hsieh-Wilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rexach, J., Clark, P. & Hsieh-Wilson, L. Chemical approaches to understanding O-GlcNAc glycosylation in the brain. Nat Chem Biol 4, 97–106 (2008). https://doi.org/10.1038/nchembio.68

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.68

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing