Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Substrate-dependent proton antiport in neurotransmitter:sodium symporters

Abstract

Neurotransmitter-sodium symporters (NSS), targets for psychostimulants and therapeutic drugs, have a critical role in neurotransmission. Whereas eukaryotic NSS show chloride-dependent transport, bacterial NSS feature Cl-independent substrate transport. Recently we showed that mutation of an acidic residue near one of the sodium ion–binding sites in LeuT of Aquifex aeolicus or Tyt1 of Fusobacterium nucleatum renders substrate binding and/or transport Cl dependent. We reasoned that the negative charge—provided either by Cl or by the transporter itself—is required for substrate translocation. Here we show that Tyt1 reconstituted in proteoliposomes is strictly dependent on the Na+ gradient and is stimulated by an inside negative membrane potential and by an inversely oriented proton gradient. Notably, Na+/substrate symport elicited H+ efflux, indicative of Na+/substrate symport–coupled H+ antiport. Mutations that render the transport phenotype Cl dependent essentially abolish the pH dependence. We propose unifying features of charge balance by all NSS members with similar mechanistic features but different molecular solutions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tyrosine uptake by intact E. coli cells.
Figure 2: Tyrosine uptake in proteoliposomes containing purified recombinant Tyt1.
Figure 3: Influence of membrane potential and pH gradient on Tyt1-mediated transport.
Figure 4: Substrate kinetics of Cl-dependent and Cl-independent Tyt1 variants.
Figure 5: Na+/substrate symport–coupled H+ antiport.
Figure 6: Schematic representation of the NSS transport cycle.
Figure 7: The proximities of Na+ and H+/Cl binding sites in Na+/H+ antiport and Na+/Cl symport.

Similar content being viewed by others

References

  1. Rudnick, G. Mechanisms of biogenic amine neurotransmitter transporters. in Neurotransmitter Transporters. Structure, Function, and Regulation (ed. Reith, M.E.A.) 25–52 (Humana Press Inc., Totowa, New Jersey, USA, 2002).

    Chapter  Google Scholar 

  2. Amara, S.G. & Sonders, M.S. Neurotransmitter transporters as molecular targets for addictive drugs. Drug Alcohol Depend. 51, 87–96 (1998).

    Article  CAS  Google Scholar 

  3. Iversen, L. Neurotransmitter transporters and their impact on the development of psychopharmacology. Br. J. Pharmacol. 147 (Suppl. 1), S82–S88 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gu, H., Wall, S.C. & Rudnick, G. Stable expression of biogenic amine transporters reveals differences in inhibitor sensitivity, kinetics, and ion dependence. J. Biol. Chem. 269, 7124–7130 (1994).

    CAS  PubMed  Google Scholar 

  5. Norregaard, L. & Gether, U. The monoamine neurotransmitter transporters: structure, conformational changes and molecular gating. Curr. Opin. Drug Discov. Dev. 4, 591–601 (2001).

    CAS  Google Scholar 

  6. Torres, G.E., Gainetdinov, R.R. & Caron, M.G. Plasma membrane monoamine transporters: structure, regulation and function. Nat. Rev. Neurosci. 4, 13–25 (2003).

    Article  CAS  Google Scholar 

  7. Keynan, S. & Kanner, B.I. γ-Aminobutyric acid transport in reconstituted preparations from rat brain: coupled sodium and chloride fluxes. Biochemistry 27, 12–17 (1988).

    Article  CAS  Google Scholar 

  8. Wadiche, J.I., Amara, S.G. & Kavanaugh, M.P. Ion fluxes associated with excitatory amino acid transport. Neuron 15, 721–728 (1995).

    Article  CAS  Google Scholar 

  9. Androutsellis-Theotokis, A. et al. Characterization of a functional bacterial homologue of sodium-dependent neurotransmitter transporters. J. Biol. Chem. 278, 12703–12709 (2003).

    Article  CAS  Google Scholar 

  10. Yamashita, A. et al. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437, 215–223 (2005).

    Article  CAS  Google Scholar 

  11. Quick, M. et al. State-dependent conformations of the translocation pathway in the tyrosine transporter Tyt1, a novel neurotransmitter:sodium symporter from Fusobacterium nucleatum. J. Biol. Chem. 281, 26444–26454 (2006).

    Article  CAS  Google Scholar 

  12. Quick, M. & Javitch, J.A. Monitoring the function of membrane transport proteins in detergent-solubilized form. Proc. Natl. Acad. Sci. USA 104, 3603–3608 (2007).

    Article  CAS  Google Scholar 

  13. Zomot, E. et al. Mechanism of chloride interaction with neurotransmitter:sodium symporters. Nature 449, 726–730 (2007).

    Article  CAS  Google Scholar 

  14. Loo, D.D. et al. Perturbation analysis of the voltage-sensitive conformational changes of the Na+/glucose cotransporter. J. Gen. Physiol. 125, 13–36 (2005).

    Article  CAS  Google Scholar 

  15. Goldberg, N.R. et al. Probing conformational changes in neurotransmitter transporters: a structural context. Eur. J. Pharmacol. 479, 3–12 (2003).

    Article  CAS  Google Scholar 

  16. Beuming, T., Shi, L., Javitch, J.A. & Weinstein, H. A comprehensive structure-based alignment of prokaryotic and eukaryotic neurotransmitter/Na+ symporters (NSS) aids in the use of the LeuT structure to probe NSS structure and function. Mol. Pharmacol. 70, 1630–1642 (2006).

    Article  CAS  Google Scholar 

  17. Quick, M. & Jung, H. Aspartate 55 in the Na+/proline permease of Escherichia coli is essential for Na+-coupled proline uptake. Biochemistry 36, 4631–4636 (1997).

    Article  CAS  Google Scholar 

  18. Shi, L. et al. The mechanism of a neurotransmitter:sodium symporter–inward release of Na+ and substrate is triggered by substrate in a second binding site. Mol. Cell 30, 667–677 (2008).

    Article  CAS  Google Scholar 

  19. Mehler, E.L. & Guarnieri, F. A self-consistent, microenvironment modulated screened coulomb potential approximation to calculate pH-dependent electrostatic effects in proteins. Biophys. J. 77, 3–22 (1999).

    Article  CAS  Google Scholar 

  20. Forrest, L.R. et al. Identification of a chloride ion binding site in Na+/Cl dependent transporters. Proc. Natl. Acad. Sci. USA 104, 12761–12766 (2007).

    Article  CAS  Google Scholar 

  21. Pace, C.N., Grimsley, G.R. & Scholtz, J.M. Protein ionizable groups: pK values and their contribution to protein stability and solubility. J. Biol. Chem. 284, 13285–13289 (2009).

    Article  CAS  Google Scholar 

  22. Mitchell, P. Molecule, group and electron translocation throught natural membranes. Biochem. Soc. Symp. 22, 142–168 (1962).

    Google Scholar 

  23. Jung, H., Tebbe, S., Schmid, R. & Jung, K. Unidirectional reconstitution and characterization of purified Na+/proline transporter of Escherichia coli. Biochemistry 37, 11083–11088 (1998).

    Article  CAS  Google Scholar 

  24. Quick, M. & Wright, E.M. Employing Escherichia coli to functionally express, purify, and characterize a human transporter. Proc. Natl. Acad. Sci. USA 99, 8597–8601 (2002).

    Article  CAS  Google Scholar 

  25. Hall, J.A. & Pajor, A.M. Functional reconstitution of SdcS, a Na+-coupled dicarboxylate carrier protein from Staphylococcus aureus. J. Bacteriol. 189, 880–885 (2007).

    Article  CAS  Google Scholar 

  26. Sun, A.Q. et al. Identification of functionally relevant residues of the rat ileal apical sodium-dependent bile acid cotransporter. J. Biol. Chem. 281, 16410–16418 (2006).

    Article  CAS  Google Scholar 

  27. Smirnova, I.N., Kasho, V. & Kaback, H.R. Protonation and sugar binding to LacY. Proc. Natl. Acad. Sci. USA 105, 8896–8901 (2008).

    Article  CAS  Google Scholar 

  28. Capaldi, R.A. & Aggeler, R. Mechanism of the F1F0-type ATP synthase, a biological rotary motor. Trends Biochem. Sci. 27, 154–160 (2002).

    Article  CAS  Google Scholar 

  29. Hilgemann, D.W. & Lu, C.C. GAT1 (GABA:Na+:Cl) cotransport function. Database reconstruction with an alternating access model. J. Gen. Physiol. 114, 459–475 (1999).

    Article  CAS  Google Scholar 

  30. Loo, D.D. et al. Role of Cl- in electrogenic Na+-coupled cotransporters GAT1 and SGLT1. J. Biol. Chem. 275, 37414–37422 (2000).

    Article  CAS  Google Scholar 

  31. Erreger, K., Grewer, C., Javitch, J.A. & Galli, A. Currents in response to rapid concentration jumps of amphetamine uncover novel aspects of human dopamine transporter function. J. Neurosci. 28, 976–989 (2008).

    Article  CAS  Google Scholar 

  32. Rudnick, G. & Nelson, P.J. Platelet 5-hydroxytryptamine transport, an electroneutral mechanism coupled to potassium. Biochemistry 17, 4739–4742 (1978).

    Article  CAS  Google Scholar 

  33. Rudnick, G. & Clark, J. From synapse to vesicle: the reuptake and storage of biogenic amine neurotransmitters. Biochim. Biophys. Acta 1144, 249–263 (1993).

    Article  CAS  Google Scholar 

  34. Keyes, S.R. & Rudnick, G. Coupling of transmembrane proton gradients to platelet serotonin transport. J. Biol. Chem. 257, 1172–1176 (1982).

    CAS  PubMed  Google Scholar 

  35. Hunte, C. et al. Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435, 1197–1202 (2005).

    Article  CAS  Google Scholar 

  36. Arkin, I.T. et al. Mechanism of Na+/H+ antiporting. Science 317, 799–803 (2007).

    Article  CAS  Google Scholar 

  37. Guptaroy, B. et al. A juxtamembrane mutation in the N-terminus of the dopamine transporter induces preference for an inward-facing conformation. Mol. Pharmacol. 75, 514–524 (2009).

    Article  CAS  Google Scholar 

  38. Sasaki, J. et al. Conversion of bacteriorhodopsin into a chloride ion pump. Science 269, 73–75 (1995).

    Article  CAS  Google Scholar 

  39. Breeuwer, P., Drocourt, J., Rombouts, F.M. & Abee, T. A novel method for continuous determination of the intracellular pH in bacteria with the internally conjugated fluorescent probe 5 (and 6-)-carboxyfluorescein succinimidyl ester. Appl. Environ. Microbiol. 62, 178–183 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kano, K. & Fendler, J.H. Pyranine as a sensitive pH probe for liposome interiors and surfaces. pH gradients across phospholipid vesicles. Biochim. Biophys. Acta 509, 289–299 (1978).

    Article  CAS  Google Scholar 

  41. Indiveri, C., Tonazzi, A., Stipani, I. & Palmieri, F. The purified and reconstituted ornithine/citrulline carrier from rat liver mitochondria: electrical nature and coupling of the exchange reaction with H+ translocation. Biochem. J. 327, 349–355 (1997).

    Article  CAS  Google Scholar 

  42. Warshel, A. Calculations of enzymatic reactions: calculations of pKa, proton transfer reactions, and general acid catalysis reactions in enzymes. Biochemistry 20, 3167–3177 (1981).

    Article  CAS  Google Scholar 

  43. Bashford, D. & Karplus, M. pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry 29, 10219–10225 (1990).

    Article  CAS  Google Scholar 

  44. Screpanti, E. & Hunte, C. Discontinuous membrane helices in transport proteins and their correlation with function. J. Struct. Biol. 159, 261–267 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Kanner for helpful discussion, M.A. Gawinovicz of the Columbia University Medical Center Protein Core Facility for the MALDI-TOF analysis of Tyt1 and L. Chung for technical assistance. Computations were performed on the Ranger at the Texas Advanced Computing Center (TG-MCB090022) and the computational infrastructure of the Institute for Computational Biomedicine at Weill Cornell Medical College. This work was supported by US National Institutes of Health grants DA022413 and DA17293 (J.A.J.), P01 DA012923 (H.W.), DA015170 (E.L.M.) and K99 DA023694 (L.S.).

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and M.Q. designed and performed transport and binding studies; L.S. and E.L.M. designed, carried out, and analyzed the computational simulations and pKa calculations. H.W. and J.A.J. helped to design experiments and analyze data related to the computational and biochemical studies, respectively. Y.Z., M.Q., L.S., E.L.M., H.W. and J.A.J. contributed to writing and editing the manuscript.

Corresponding author

Correspondence to Jonathan A Javitch.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Table 1 and Supplementary Figures 2–3 (PDF 184 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Quick, M., Shi, L. et al. Substrate-dependent proton antiport in neurotransmitter:sodium symporters. Nat Chem Biol 6, 109–116 (2010). https://doi.org/10.1038/nchembio.284

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.284

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing