Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A glycopeptide regulating stem cell fate in Arabidopsis thaliana

Abstract

The secreted peptide gene CLAVATA3 (CLV3) regulates stem cell fate in the shoot apical meristem in Arabidopsis thaliana plants, but the molecular structure of the active mature CLV3 peptide is controversial. Here, using nano-LC-MS/MS analysis of apoplastic peptides of A. thaliana plants overexpressing CLV3, we show that CLV3 is a 13-amino-acid arabinosylated glycopeptide. Post-translational arabinosylation of CLV3 is critical for its biological activity and high-affinity binding to its receptor CLV1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of the active mature form of CLV3.
Figure 2: Biological and receptor binding activities of CLV3 and CLE2 glycopeptides.

Similar content being viewed by others

References

  1. Clark, S.E., Williams, R.W. & Meyerowitz, E.M. Cell 89, 575–585 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Fletcher, J.C., Brand, U., Running, M.P., Simon, R. & Meyerowitz, E.M. Science 283, 1911–1914 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Fletcher, J.C. & Meyerowitz, E.M. Curr. Opin. Plant Biol. 3, 23–30 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Schoof, H. et al. Cell 100, 635–644 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Cock, J.M. & McCormick, S. Plant Physiol. 126, 939–942 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ni, J. & Clark, S.E. Plant Physiol. 140, 726–733 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fiers, M. et al. Plant Physiol. 141, 1284–1292 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fiers, M. et al. Plant Cell 17, 2542–2553 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kondo, T. et al. Science 313, 845–848 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Ogawa, M., Shinohara, H., Sakagami, Y. & Matsubayashi, Y. Science 319, 294 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Ohyama, K., Ogawa, M. & Matsubayashi, Y. Plant J. 55, 152–160 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Bollig, K. et al. Carbohydr. Res. 342, 2557–2566 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Ashford, D. et al. Biochem. J. 201, 199–208 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Akiyama, Y., Mori, M. & Kato, K. Agric. Biol. Chem. 44, 2487–2489 (1980).

    CAS  Google Scholar 

  15. Akiyama, Y. & Kato, K. Agric. Biol. Chem. 40, 2343–2348 (1976).

    CAS  Google Scholar 

  16. Seitz, O. ChemBioChem 1, 214–246 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Sassaki, G.L., Gorin, P.A., Souza, L.M., Czelusniak, P.A. & Iacomini, M. Carbohydr. Res. 340, 731–739 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a Grant-in-Aid for Scientific Research for Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (No. 19060010), a Grant-in-Aid for Young Scientists from MEXT (No. 18687003), a Grant-in-Aid for Creative Scientific Research from the Japan Society for the Promotion of Science (No. 19GS0315) and the Program of Basic Research Activities for Innovative Biosciences from the Bio-oriented Technology Research Advancement Institution (BRAIN). We thank the Radioisotope Research Center of Nagoya University for instrumental support in radioisotope experiments.

Author information

Authors and Affiliations

Authors

Contributions

K.O., H.S. and M.O.-O. performed and analyzed experiments. K.O. identified glycopeptides and performed bioassays. H.S. performed sugar linkage analysis and receptor binding assays. M.O.-O. generated transgenic plants. Y.M. designed, performed and analyzed experiments and prepared the manuscript.

Corresponding author

Correspondence to Yoshikatsu Matsubayashi.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Methods (PDF 762 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohyama, K., Shinohara, H., Ogawa-Ohnishi, M. et al. A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat Chem Biol 5, 578–580 (2009). https://doi.org/10.1038/nchembio.182

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.182

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing