Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis

Abstract

Ribosomally synthesized peptides are built out of L-amino acids, whereas D-amino acids are generally the hallmark of non-ribosomal synthetic processes. Here we show that the model bacterium Bacillus subtilis is able to produce a novel type of ribosomally synthesized and post-translationally modified peptide that contains D-amino acids, and which we propose to call epipeptides. We demonstrate that a two [4Fe–4S]-cluster radical S-adenosyl-L-methionine (SAM) enzyme converts L-amino acids into their D-counterparts by catalysing Cα-hydrogen-atom abstraction and using a critical cysteine residue as the hydrogen-atom donor. Unexpectedly, these D-amino acid residues proved to be essential for the activity of a peptide that induces the expression of LiaRS, a major component of the bacterial cell envelope stress-response system. Present in B. subtilis and in several members of the human microbiome, these epipeptides and radical SAM epimerases broaden the landscape of peptidyl structures accessible to living organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: YydG is a radical SAM enzyme that catalyses the modification of the YydF peptide.
Figure 2: YydG catalyses hydrogen-atom transfer to the peptide backbone.
Figure 3: YydG catalyses amino acid epimerization.
Figure 4: Activity of YydG mutants.
Figure 5: Proposed mechanism of the radical SAM peptide epimerase YydG.
Figure 6: Activity of the epipeptides on B. subtilis.

Similar content being viewed by others

References

  1. Jordan, S., Junker, A., Helmann, J. D. & Mascher, T. Regulation of LiaRS-dependent gene expression in Bacillus subtilis: identification of inhibitor proteins, regulator binding sites, and target genes of a conserved cell envelope stress-sensing two-component system. J. Bacteriol. 188, 5153–5166 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jordan, S., Hutchings, M. I. & Mascher, T. Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol. Rev. 32, 107–146 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Mascher, T., Margulis, N. G., Wang, T., Ye, R. W. & Helmann, J. D. Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Mol. Microbiol. 50, 1591–1604 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Mascher, T., Zimmer, S. L., Smith, T. A. & Helmann, J. D. Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis. Antimicrob. Agents Chemother. 48, 2888–2896 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Butcher, B. G., Lin, Y. P. & Helmann, J. D. The yydFGHIJ operon of Bacillus subtilis encodes a peptide that induces the LiaRS two-component system. J. Bacteriol. 189, 8616–8625 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Benjdia, A. & Berteau, O. Sulfatases and radical SAM enzymes: emerging themes in glycosaminoglycan metabolism and the human microbiota. Biochem. Soc. Trans. 44, 109–115 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Vey, J. L. & Drennan, C. L. Structural insights into radical generation by the radical SAM superfamily. Chem. Rev. 111, 2487–2506 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Broderick, J. B., Duffus, B. R., Duschene, K. S. & Shepard, E. M. Radical S-adenosylmethionine enzymes. Chem. Rev. 114, 4229–4317 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Walsby, C. J. et al. Electron-nuclear double resonance spectroscopic evidence that S-adenosylmethionine binds in contact with the catalytically active [4Fe–4S]+ cluster of pyruvate formate-lyase activating enzyme. J. Am. Chem. Soc. 124, 3143–3151 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Nicolet, Y., Amara, P., Mouesca, J. M. & Fontecilla-Camps, J. C. Unexpected electron transfer mechanism upon AdoMet cleavage in radical SAM proteins. Proc. Natl Acad. Sci. USA 106, 14867–14871 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Frey, P. A., Hegeman, A. D. & Ruzicka, F. J. The radical SAM superfamily. Crit. Rev. Biochem. Mol. Biol. 43, 63–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Pierre, S. et al. Thiostrepton tryptophan methyltransferase expands the chemistry of radical SAM enzymes. Nat. Chem. Biol. 8, 957–959 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, S. C. & Frey, P. A. Binding energy in the one-electron reductive cleavage of S-adenosylmethionine in lysine 2,3-aminomutase, a radical SAM enzyme. Biochemistry 46, 12889–12895 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Horitani, M. et al. Why nature uses radical SAM enzymes so widely: electron nuclear double resonance studies of lysine 2,3-aminomutase show the 5′-dAdo* ‘free radical’ is never free. J. Am. Chem. Soc. 137, 7111–7121 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, S. C. & Frey, P. A. S-adenosylmethionine as an oxidant: the radical SAM superfamily. Trends Biochem. Sci. 32, 101–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Chandor, A. et al. Dinucleotide spore photoproduct, a minimal substrate of the DNA repair spore photoproduct lyase enzyme from Bacillus subtilis. J. Biol. Chem. 281, 26922–26931 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Benjdia, A. DNA photolyases and SP lyase: structure and mechanism of light-dependent and independent DNA lyases. Curr. Opin. Struct. Biol. 22, 711–720 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Benjdia, A., Heil, K., Barends, T. R. M., Carell, T. & Schlichting, I. Structural insights into recognition and repair of UV-DNA damage by spore photoproduct lyase, a radical SAM enzyme. Nucleic Acids Res 40, 9308–9318 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sun, X. et al. The free radical of the anaerobic ribonucleotide reductase from Escherichia coli is at glycine 681. J. Biol. Chem. 271, 6827–6831 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Benjdia, A., Deho, G., Rabot, S. & Berteau, O. First evidences for a third sulfatase maturation system in prokaryotes from E. coli aslB and ydeM deletion mutants. FEBS Lett. 581, 1009–1014 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Benjdia, A. et al. Anaerobic sulfatase-maturating enzymes: radical SAM enzymes able to catalyze in vitro sulfatase post-translational modification. J. Am. Chem. Soc. 129, 3462–3463 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Benjdia, A., Leprince, J., Sandstrom, C., Vaudry, H. & Berteau, O. Mechanistic investigations of anaerobic sulfatase-maturating enzyme: direct Cβ H-atom abstraction catalyzed by a radical AdoMet enzyme. J. Am. Chem. Soc. 131, 8348–8349 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Benjdia, A. et al. Anaerobic sulfatase-maturating enzymes—first dual substrate radical S-adenosylmethionine enzymes. J. Biol. Chem. 283, 17815–17826 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Arragain, S . et al. Post-translational modification of ribosomal proteins: structural and functional characterization of RimO from Thermotoga maritima, a radical-SAM methylthiotransferase. J. Biol. Chem. 258, 5792–5801 (2009).

    Google Scholar 

  25. Lee, K. H. et al. Characterization of RimO, a new member of the methylthiotransferase subclass of the radical SAM superfamily. Biochemistry 48, 10162–10174 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Flühe, L. K. et al. The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A. Nat. Chem. Biol. 8, 350–357 (2012).

    Article  PubMed  CAS  Google Scholar 

  27. Benjdia, A. et al. Thioether bond formation by SPASM domain radical SAM enzymes: Cα H-atom abstraction in subtilosin A biosynthesis. Chem. Commun. 52, 6249–6252 (2016).

    Article  CAS  Google Scholar 

  28. Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Freeman, M. F. et al. Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides. Science 338, 387–390 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Huo, L., Rachid, S., Stadler, M., Wenzel, S. C. & Muller, R. Synthetic biotechnology to study and engineer ribosomal bottromycin biosynthesis. Chem. Biol. 19, 1278–1287 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Duin, E. C. et al. [2Fe–2S] to [4Fe–4S] cluster conversion in Escherichia coli biotin synthase. Biochemistry 36, 11811–11820 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Bansal, P. S. et al. Substrate specificity of platypus venom L-to-D-peptide isomerase. J. Biol. Chem. 283, 8969–8975 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Morinaka, B. I. et al. Radical S-adenosyl methionine epimerases: regioselective introduction of diverse D-amino acid patterns into peptide natural products. Angew. Chem. Int. Ed. 53, 8503–8507 (2014).

    Article  CAS  Google Scholar 

  34. Burkhart, B. J., Hudson, G. A., Dunbar, K. L. & Mitchell, D. A. A prevalent peptide-binding domain guides ribosomal natural product biosynthesis. Nat. Chem. Biol. 11, 564–570 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Benjdia, A. et al. Anaerobic sulfatase-maturating enzyme—a mechanistic link with glycyl radical-activating enzymes? FEBS J. 277, 1906–1920 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grell, T. A., Goldman, P. J. & Drennan, C. L. SPASM and twitch domains in S-adenosylmethionine (SAM) radical enzymes. J. Biol. Chem. 290, 3964–3971 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Kudo, F., Hoshi, S., Kawashima, T., Kamachi, T. & Eguchi, T. Characterization of a radical S-adenosyl-L-methionine epimerase, NeoN, in the last step of neomycin B biosynthesis. J. Am. Chem. Soc. 136, 13909–13915 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jones, D. T., Taylor, W. R. & Thornton, J. M. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8, 275–282 (1992).

    CAS  PubMed  Google Scholar 

  40. Zharkikh, A. & Li, W. H. Estimation of confidence in phylogeny: the complete-and-partial bootstrap technique. Mol. Phylogenet. Evol. 4, 44–63 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Gerlt, J. A. et al. Enzyme function initiative-enzyme similarity tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochim. Biophys. Acta 1854, 1019–1037 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Benjdia, A., Heil, K., Winkler, A., Carell, T. & Schlichting, I. Rescuing DNA repair activity by rewiring the H-atom transfer pathway in the radical SAM enzyme, spore photoproduct lyase. Chem. Commun. 50, 14201–14204 (2014).

    Article  CAS  Google Scholar 

  43. Chandor-Proust, A. et al. DNA repair and free radicals, new insights into the mechanism of spore photoproduct lyase revealed by single amino acid substitution. J. Biol. Chem. 283, 36361–8 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wagner, A. F., Frey, M., Neugebauer, F. A., Schafer, W. & Knappe, J. The free radical in pyruvate formate-lyase is located on glycine-734. Proc. Natl Acad. Sci. USA 89, 996–1000 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Reichard, P. & Ehrenberg, A. Ribonucleotide reductase—a radical enzyme. Science 221, 514–519 (1983).

    Article  CAS  PubMed  Google Scholar 

  46. Moore, B. N. & Julian, R. R. Dissociation energies of X–H bonds in amino acids. Phys. Chem. Chem. Phys. 14, 3148–3154 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Stubbe, J., Nocera, D. G., Yee, C. S. & Chang, M. C. Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer? Chem. Rev. 103, 2167–2201 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Stubbe, J. & van der Donk, W. A. Ribonucleotide reductases: radical enzymes with suicidal tendencies. Chem. Biol. 2, 793–801 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Staples, C. R. et al. The function and properties of the iron–sulfur center in spinach ferredoxin: thioredoxin reductase: a new biological role for iron–sulfur clusters. Biochemistry 35, 11425–11434 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Bennati, M., Weiden, N., Dinse, K. P. & Hedderich, R. 57Fe ENDOR spectroscopy on the iron–sulfur cluster involved in substrate reduction of heterodisulfide reductase. J. Am. Chem. Soc. 126, 8378–8379 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Duin, E. C., Madadi-Kahkesh, S., Hedderich, R., Clay, M. D. & Johnson, M. K. Heterodisulfide reductase from Methanothermobacter marburgensis contains an active-site [4Fe–4S] cluster that is directly involved in mediating heterodisulfide reduction. FEBS Lett. 512, 263–268 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Dai, S., Schwendtmayer, C., Schurmann, P., Ramaswamy, S. & Eklund, H. Redox signaling in chloroplasts: cleavage of disulfides by an iron-sulfur cluster. Science 287, 655–658 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Walters, E. M. et al. Spectroscopic characterization of site-specific [Fe4S4] cluster chemistry in ferredoxin:thioredoxin reductase: implications for the catalytic mechanism. J. Am. Chem. Soc. 127, 9612–9624 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Nicolas, P. et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 335, 1103–1106 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Craig, R., Cortens, J. C., Fenyo, D. & Beavis, R. C. Using annotated peptide mass spectrum libraries for protein identification. J. Proteome Res. 5, 1843–1849 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Radeck, J. et al. Anatomy of the bacitracin resistance network in Bacillus subtilis. Mol. Microbiol. 100, 607–620 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Wolf, D., Dominguez-Cuevas, P., Daniel, R. A. & Mascher, T. Cell envelope stress response in cell wall-deficient L-forms of Bacillus subtilis. Antimicrob. Agents Chemother. 56, 5907–5915 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ling, L. L. et al. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ellermeier, C. D., Hobbs, E. C., Gonzalez-Pastor, J. E. & Losick, R. A three-protein signaling pathway governing immunity to a bacterial cannibalism toxin. Cell 124, 549–559 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Wilson, M. C. et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506, 58–62 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Cotter, P. D., Ross, R. P. & Hill, C. Bacteriocins—a viable alternative to antibiotics? Nat. Rev. Microbiol. 11, 95–105 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from European Research Council (Consolidator Grant 617053 to O.B.). High-resolution MS analyses were performed on the INRA PAPPSO proteomics platform.

Author information

Authors and Affiliations

Authors

Contributions

A.B. and O.B. conceived and designed the experiments; A.B., A.G., P.R., J.L. and O.B. performed the experiments; A.B., A.G, J.L. and O.B. analysed the data; A.B. and O.B. co-wrote the manuscript.

Corresponding author

Correspondence to Olivier Berteau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3263 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benjdia, A., Guillot, A., Ruffié, P. et al. Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis. Nature Chem 9, 698–707 (2017). https://doi.org/10.1038/nchem.2714

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2714

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing