Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity

Abstract

The catalytic activity of gold depends on particle size, with the reactivity increasing as the particle diameter decreases. However, investigations into behaviour in the subnanometre regime (where gold exists as small clusters of a few atoms) began only recently with advances in synthesis and characterization techniques. Here we report an easy method to prepare isolated gold atoms supported on functionalized carbon nanotubes and their performance in the oxidation of thiophenol with O2. We show that single gold atoms are not active, but they aggregate under reaction conditions into gold clusters of low atomicity that exhibit a catalytic activity comparable to that of sulfhydryl oxidase enzymes. When clusters grow into larger nanoparticles, catalyst activity drops to zero. Theoretical calculations show that gold clusters are able to activate thiophenol and O2 simultaneously, and larger nanoparticles are passivated by strongly adsorbed thiolates. The combination of both reactants activation and facile product desorption makes gold clusters excellent catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of isolated gold atoms.
Figure 2: Oxidation of thiophenol to disulfide in the presence of O2.
Figure 3: Evolution of the gold species present on the catalyst.
Figure 4: Oxidation of thiophenol to disulfide in the presence of O2 catalysed by size-selected gold clusters.
Figure 5: Structures involved in the mechanism of disulfide formation catalysed by Au(I) species.
Figure 6: Reactivity of gold clusters of low atomicity.

Similar content being viewed by others

References

  1. Hughes, M. D. et al. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 437, 1132–1135 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Hashmi, A. S. K. & Hutchings, G. J. Gold catalysis. Angew. Chem. Int. Ed. 45 7896–7936 (2006).

    Article  Google Scholar 

  3. Corma, A. & Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 37, 2096–2126 (2008).

  4. Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 36, 153–166 (1997).

    Article  CAS  Google Scholar 

  5. López, N. et al. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal. 223, 232–235 (2004).

    Article  CAS  Google Scholar 

  6. Hutchings, G. J. Catalysis by gold. Catal. Today 100, 55–61 (2005).

    Article  CAS  Google Scholar 

  7. Chen, M. S. & Goodman, D. W. Catalytically active gold: from nanoparticles to ultrathin films. Acc. Chem. Res. 39, 739–746 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Risse, Th., Shaikhutdinov, Sh., Nilius, N., Sterrer, M. & Freund, H. J. Gold supported on thin oxide films: from single atoms to nanoparticles. Acc. Chem. Res. 41, 949–956 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Liu, Y., Tsunoyama, H., Akita, T., Xie, S. & Tsukuda, T. Aerobic oxidation of cyclohexane catalysed by size-controlled Au clusters on hydroxyapatite: size effect in the sub-2 nm regime. ACS Catal. 1, 2–6 (2011).

    Article  CAS  Google Scholar 

  10. Huang, J. et al. Propene epoxidation with O2 and H2: identification of the most active gold clusters. J. Catal. 278, 8–15 (2011).

    Article  CAS  Google Scholar 

  11. Haruta, M. et al. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4 . J. Catal. 144, 175–192 (1993).

    Article  CAS  Google Scholar 

  12. Tsunoyama, H., Ichikuni, N., Sakurai, H. & Tsukuda, T. Effect of electronic structures of Au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. J. Am. Chem. Soc. 131, 7086–7093 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Herzing, A. A., Kiely, C. J., Carley, A. F., Landon, P. & Hutchings, G. J. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321, 1331–1332 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Lupini A. R., Veith, G. M., Dudney, J. & Pennycook, S. J. Understanding catalyst stability through aberration-corrected STEM. Microsc Microanal. 15, 1408–1409 (2009).

    Article  Google Scholar 

  15. Allard, L. F. et al. Evolution of gold structure during thermal treatment of Au/FeOx catalysts revealed by aberration-corrected electron microscopy. J. Electron Microsc. 58, 199–212 (2009).

    Article  CAS  Google Scholar 

  16. Uzun, A., Ortalan, V., Hao, Y., Browning, N. D. & Gates, B. C. Imaging gold atoms in site-isolated MgO-supported mononuclear gold complexes. J. Phys. Chem. C 113, 16847–16849 (2009).

    Article  CAS  Google Scholar 

  17. Lu, J., Aydin, C., Browning, N. D. & Gates, B. C. Imaging isolated gold atom catalytic sites in zeolite NaY. Angew. Chem. 51, 5842–5846 (2012).

    Article  CAS  Google Scholar 

  18. Yoon, B., Häkkinen, H. & Landman, U. Interaction of O2 with gold clusters: molecular and dissociative adsorption. J. Phys. Chem. A 107, 4066–4071 (2003).

    Article  CAS  Google Scholar 

  19. Lang, S. M., Bernhardt, T. M., Barnett, R. N., Yoon, B. & Landman, U. Hydrogen-promoted oxygen activation by free gold cluster cations. J. Am. Chem. Soc. 131, 8939–8951 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Hagen, J. et al. Coadsorption of CO and O2 on small free gold cluster anions at cryogenic temperatures: model complexes for catalytic CO oxidation. Phys. Chem. Chem. Phys. 4, 1707–1709 (2002).

    Article  CAS  Google Scholar 

  21. Molina, L. M., Lesarri, A. & Alonso, J. A. New insights on the reaction mechanism for CO oxidation on Au catalysts. Chem. Phys. Lett. 468, 201–204 (2009).

    Article  CAS  Google Scholar 

  22. Joshi, A. M., Delgass, W. N. & Thomson, K. T. Comparison of the catalytic activity of Au3, Au4+, Au5 and Au5 in the gas-phase reaction of H2 and O2 to form hydrogen peroxide: a density functional theory investigation. J. Phys. Chem. B 109, 22392–22406 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Lee, S. et al. Selective propene epoxidation on immobilized Au6–10 clusters: the effect of hydrogen and water on activity and selectivity. Angew. Chem. Int. Ed. 48, 1467–1471 (2009).

    Article  CAS  Google Scholar 

  24. Guzman, J. & Gates, B. C. Structure and reactivity of a mononuclear gold-complex catalyst supported on magnesium oxide. Angew. Chem. Int. Ed. 42, 690–693 (2003).

    Article  CAS  Google Scholar 

  25. Robinson, P. S. D., Khairallah, G. N., da Silva, G., Lioe, H. & O'Hair, R. A. J. Gold-mediated C–I bond activation of iodobenzene. Angew. Chem. Int. Ed. 51, 3812–3817 (2012).

    Article  CAS  Google Scholar 

  26. Jia, C. J. & Schüth, F. Colloidal metal nanoparticles as a component of designed catalyst. Phys. Chem. Chem. Phys. 13, 2457–2487 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Tran, M. L., Zvyagin, A. V. & Plakhotnik, T. Synthesis and spectroscopic observation of dendrimer-encapsulated gold nanoclusters. Chem. Commun. 2400–2401 (2006).

  28. Ledo-Suárez, A. et al. Facile synthesis of stable subnanosized silver clusters in microemulsions. Angew. Chem. Int. Ed. 46, 8823–8827 (2007).

    Article  CAS  Google Scholar 

  29. Turner, M. et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454, 981–983 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Liu, Y. M., Tsunoyama, H., Akita, T. & Tsukuda, T. Chem. Commun. 46, 550–552 (2010).

    Article  CAS  Google Scholar 

  31. Shichibu, Y. & Konishi, K. HCl-induced nuclearity convergence in diphosphine-protected ultrasmall gold clusters: a novel synthetic route to ‘magic-number’ Au13 clusters. Small 6, 1216–1220 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Xie, S., Tsunoyama, H., Kurashige, W., Negishi, Y. & Tsukuda, T. Enhancement in aerobic alcohol oxidation catalysis of Au25 clusters by single Pd atom doping. ACS Catal. 2, 1519–1523 (2012).

    Article  CAS  Google Scholar 

  33. Sanchez, A. et al. When gold is not noble: nanoscale gold catalysts. J. Phys. Chem. A 103, 9573–9578 (1999).

    Article  CAS  Google Scholar 

  34. Hoober, K. L. & Thorpe, C. Egg white sulfhydryl oxidase: kinetic mechanism of the catalysis of disulfide bond formation. Biochemistry 38, 3211–3217 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Jaje, J. et al. A flavin-dependent sulfhydryl oxidase in bovine milk. Biochemistry 46, 13031–13040 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dumont, E., Michel, C. & Sautet, P. Unraveling gold(I)-specific action towards peptidic disulfide cleavage: a DFT investigation. ChemPhysChem 12, 2596–2603 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Barton, D. G. & Podkolzin, S. G. Kinetic study of a direct water synthesis over silica-supported gold nanoparticles. J. Phys. Chem. B 109, 2262–2274 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Ntainjua, E. N. et al. The role of the support in achieving high selectivity in the direct formation of hydrogen peroxide. Green Chem. 10, 1162–1169 (2008).

    Article  CAS  Google Scholar 

  39. Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318, 430–433 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Häkkinen, H. The gold–sulfur interface at the nanoscale. Nature Chem. 4, 443–455 (2012).

    Article  CAS  Google Scholar 

  41. Alves, L. et al. Synthesis and stabilization of subnanometric gold oxide nanoparticles on multiwalled carbon nanotubes and their catalytic activity. J. Am. Chem. Soc. 133, 10251–10261 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Santiago-González, B. et al. One step synthesis of the smallest photoluminescent and paramagnetic PVP-protected gold atomic clusters. Nano Lett. 10, 4217–4221 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  44. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  45. Frisch, M. J. et al. Gaussian 03, Revision B.04 (Gaussian, 2003).

    Google Scholar 

  46. McLean A. D. & Chandler G. S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J. Chem. Phys. 72 5639–5648 (1980).

    Article  CAS  Google Scholar 

  47. Krishnan, R., Binkley, J. S., Seeger, R. &. Pople, J. A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72 650–654 (1980).

    Article  CAS  Google Scholar 

  48. Hay P. J. & Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, 270–283 (1985).

    Article  CAS  Google Scholar 

  49. Reed, A. E., Weinstock, R. B. & Weinhold, F. Natural population analysis. J. Chem. Phys. 83, 735–747 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Spanish Science and Innovation Ministry (Consolider Ingenio 2010-MULTICAT CSD2009-00050, Subprograma de apoyo a Centros y Universidades de Excelencia Severo Ochoa SEV 2012 0267, MAT2011-28009 and MAT2010-20442 projects) and Xunta de Galicia (Grupos Ref.Comp.2010/41) is acknowledged. M.J.Y. and E.L. acknowledge the support of the National Centre for Research Resources (5 G12RR013646-12) and the National Institute on Minority Health and Health Disparities (G12MD007591) from the National Institutes of Health and of the National Science Foundation for support with grants DMR-1103730 and PREM: NSF PREM Grant # DMR 0934218. We also acknowledge the support of Consejo Nacional De Ciencia y Tecnología. J.N. expresses his gratitude to Consejo Superior de Investigaciones Científicas for a JAE Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

A.C. conceived, designed and directed the study and the analysis and interpretation of results. P.C. performed catalyst synthesis, characterization and testing. E.M. participated in catalyst synthesis. M.J.S. and J.N. carried out catalyst testing. M.B. designed and carried out the theoretical study. M.J.Y., E.L. and A.P. performed the HR-STEM characterization. M.A.L-Q. and D.B. synthesized and characterized the isolated size-controlled clusters. G.G. did the XAS measurements. A.M. collaborated in HR-STEM characterization. The manuscript was co-written by P.C., M.B. and A.C.

Corresponding author

Correspondence to Avelino Corma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5252 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corma, A., Concepción, P., Boronat, M. et al. Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nature Chem 5, 775–781 (2013). https://doi.org/10.1038/nchem.1721

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1721

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing