Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The signal flow and motor response controling chemotaxis of sea urchin sperm

Abstract

The signalling pathway and the behavioural strategy underlying chemotaxis of sperm are poorly understood. We have studied the cellular events and motor responses that mediate chemotaxis of sperm from the sea urchin Arbacia punctulata. Here we show that resact, a chemoattractant peptide, initiates a rapid and transient rise in the concentration of cyclic GMP, followed by a transient influx of Ca2+. The binding of a single resact molecule elicits a Ca2+ response, and 50–100 bound molecules saturate the response. The ability to register single molecules is reminiscent of the single-photon sensitivity of rod photoreceptors. Both resact and cyclic nucleotides cause a turn or brief tumbling in the swimming path of sperm. We conclude that a cGMP-mediated increase in the Ca2+ concentration induces the primary motor response of sperm to the chemoattractant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Resact-induced changes in cyclic nucleotide concentrations in sperm.
Figure 2: Resact-induced changes in Ca2+ concentration in sperm.
Figure 3: Responses of sperm to single resact molecules.
Figure 4: Ca2+ responses in sperm evoked by cyclic nucleotides.
Figure 5: Modes of behaviour and flagellar waveforms of sperm.
Figure 6: Increase in Ca2+ concentration in sperm induced by resact and caged resact.
Figure 7: Behaviour of sperm on stimulation by resact released from caged resact.
Figure 8: Behaviour of sperm on photolysis of caged cyclic nucleotides.

Similar content being viewed by others

References

  1. Cosson, M.P. in Controls of Sperm Motility: Biological and Clinical Aspects (ed. Gagnon, C.) 103–135 (CRC, Boca Raton, FL, 1990).

    Google Scholar 

  2. Eisenbach, M. Sperm chemotaxis. Rev. Reprod. 4, 56–66 (1999).

    Article  CAS  Google Scholar 

  3. Miller, R.L. in Biology of Fertilization, Vol. 2: Biology of the Sperm (eds Metz, C.B. & Monroy, A.) 275–337 (Academic, New York, 1985).

    Book  Google Scholar 

  4. Eisenbach, M. & Tur-Kaspa, I. Do human eggs attract spermatozoa? BioEssays 21, 203–210 (1999).

    Article  CAS  Google Scholar 

  5. Garbers, D.L. Molecular basis of fertilization. Annu. Rev. Biochem. 58, 719–742 (1989).

    Article  CAS  Google Scholar 

  6. Suzuki, N. Structure, function and biosynthesis of sperm-activating peptides and fucose sulfate glycoconjugate in the extracellular coat of sea urchin eggs. Zool. Sci. 12, 13–27 (1995).

    Article  CAS  Google Scholar 

  7. Ward, C.R. & Kopf, G.S. Molecular events mediating sperm activation. Dev. Biol. 158, 9–34 (1993).

    Article  CAS  Google Scholar 

  8. Darszon, A., Labarca, P., Nishigaki, T. & Espinosa, F. Ion channels in sperm physiology. Physiol. Rev. 79, 481–510 (1999).

    Article  CAS  Google Scholar 

  9. Cook, S.P. & Babcock, D.F. Activation of Ca2+ permeability by cAMP is coordinated through the pHi increase induced by speract. J. Biol. Chem. 268, 22408–22413 (1993).

    CAS  PubMed  Google Scholar 

  10. Cook, S.P. & Babcock, D.F. Selective modulation by cGMP of the K+ channel activated by speract. J. Biol. Chem. 268, 22402–22407 (1993).

    CAS  PubMed  Google Scholar 

  11. Cook, S.P., Brokaw, C.J., Muller, C.H. & Babcock, D.F. Sperm chemotaxis: egg peptides control cytosolic calcium to regulate flagellar responses. Dev. Biol. 165, 10–19 (1994).

    Article  CAS  Google Scholar 

  12. Darszon, A., Beltrán, C., Felix, R., Nishigaki, T. & Treviño, C.L. Ion transport in sperm signaling. Dev. Biol. 240, 1–14 (2001).

    Article  CAS  Google Scholar 

  13. Bookbinder, L.H., Moy, G.W. & Vacquier, V.D. Identification of sea urchin sperm adenylate cyclase. J. Cell Biol. 111, 1859–1866 (1990).

    Article  CAS  Google Scholar 

  14. Bookbinder, L.H., Moy, G.W. & Vacquier, V.D. In vitro phosphorylation of sea urchin sperm adenylate cyclase by cyclic adenosine monophosphate-dependent protein kinase. Mol. Reprod. Dev. 28, 150–157 (1991).

    Article  CAS  Google Scholar 

  15. Beltrán, C., Zapata, O. & Darszon, A. Membrane potential regulates sea urchin sperm adenylylcyclase. Biochemistry 35, 7591–7598 (1996).

    Article  Google Scholar 

  16. Nishigaki, T., Zamudio, F.Z., Possani, L.D. & Darszon, A. Time-resolved sperm responses to an egg peptide measured by stopped-flow fluorometry. Biochem. Biophys. Res. Commun. 284, 531–535 (2001).

    Article  CAS  Google Scholar 

  17. Schackmann, R.W. & Chock, P.B. Alteration of intracellular [Ca2+] in sea urchin sperm by the egg peptide speract. J. Biol. Chem. 261, 8719–8728 (1986).

    CAS  PubMed  Google Scholar 

  18. Shimomura, H. & Garbers, D.L. Differential effects of resact analogues on sperm respiration rates and cyclic nucleotide concentrations. Biochemistry 25, 3405–3410 (1986).

    Article  CAS  Google Scholar 

  19. Nishigaki, T. & Darszon, A. Real-time-measurements of the interactions between fluorescent speract and its sperm receptor. Dev. Biol. 223, 17–26 (2000).

    Article  CAS  Google Scholar 

  20. Lamb, T.D., McNaughton, P.A. & Yau, K.-W. Spatial spread of activation and background desensitization in toad rod outer segments. J. Physiol. (Lond.) 319, 463–496 (1981).

    Article  CAS  Google Scholar 

  21. Ward, G.E., Brokaw, C.J., Garbers, D.L. & Vacquier, V.D. Chemotaxis of Arbacia punctulata spermatozoa to resact, a peptide from the egg jelly layer. J. Cell Biol. 101, 2324–2329 (1985).

    Article  CAS  Google Scholar 

  22. Brokaw, C.J., Josslin, R. & Bobrow, L. Calcium ion regulation of flagellar beat symmetry in reactivated sea urchin spermatozoa. Biochem. Biophys. Res. Commun. 58, 795–800 (1974).

    Article  CAS  Google Scholar 

  23. Ho, H.C. & Suarez, S.S. Hyperactivation of mammalian spermatozoa: function and regulation. Reproduction 122, 519–526 (2001).

    Article  CAS  Google Scholar 

  24. Babcock, D.F., Bosma, M.M., Battaglia, D.E. & Darszon, A. Early persistent activation of sperm K+ channels by the egg peptide speract. Proc. Natl Acad. Sci. USA 89, 6001–6005 (1992).

    Article  CAS  Google Scholar 

  25. Gauss, R., Seifert, R. & Kaupp, U.B. Molecular identification of a hyperpolarization-activated channel in sea urchin sperm. Nature 393, 583–587 (1998).

    Article  CAS  Google Scholar 

  26. Pugh, E.N. Jr. & Lamb, T.D. in Handbook of Biological Physics (eds Stavenga, D.G., DeGrip, W.J. & Pugh, E.N Jr) 183–255 (Elsevier Science, Amsterdam, The Netherlands, 2000).

    Google Scholar 

  27. Gray-Keller, M., Denk, W., Shraiman, B. & Detwiler, P.B. Longitudinal spread of second messenger signals in isolated rod outer segments of lizards. J. Physiol. (Lond) 519, 679–692 (1999).

    Article  CAS  Google Scholar 

  28. Grynkiewicz, G., Poenie, M. & Tsien, R.Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985).

    CAS  Google Scholar 

  29. Hagen, V., et al. Highly efficient and ultrafast phototriggers for cAMP and cGMP by using long-wavelength UV/Vis-activation. Angew. Chem. Int. Ed. 40, 1046–1048 (2001).

    Article  CAS  Google Scholar 

  30. Hagen, V., Frings, S., Bendig, J., Lorenz, D., Wiesner, B. & Kaupp, U.B. Fluorescence spectroscopic quantification of the release of cyclic nucleotides from photocleavable [Bis(carboxymethoxy)coumarin-4-yl]methyl esters inside cells. Angew. Chem. Int. Ed. 41, 3625–3628 (2002).

    Article  CAS  Google Scholar 

  31. Tatsu, Y., Nishigaki, T., Darszon, A. & Yumoto, N. A caged sperm-activating peptide that has a photocleavable protecting group on the backbone amide. FEBS Lett. 525, 20–24 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Kaupp laboratory for reading the manuscript and discussions; H.-D. Grammig for making the figures; and A. Eckert for preparing the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Benjamin Kaupp.

Supplementary information

Supplementary Figures

Figure S1 Changes in [Ca2+]i in sperm stimulated by resact in the presence of 0.5 mM IBMX. (PDF 344 kb)

Figure S2 Accumulation of sperm in an area (rectangular field) of photolysed caged resact (10 μM). cells entering the area of released resact (20 ms intervals between consecutive

Figure S3 Models of Chemotactic Signaling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaupp, U., Solzin, J., Hildebrand, E. et al. The signal flow and motor response controling chemotaxis of sea urchin sperm. Nat Cell Biol 5, 109–117 (2003). https://doi.org/10.1038/ncb915

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb915

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing